结合CAMEL框架与QWEN实现数据合成,奖励模型评估和数据过滤工作流
本笔记本展示了如何结合CAMEL框架与QWEN实现数据合成、奖励模型评估和数据过滤的工作流。通过CAMEL的多代理系统,支持复杂AI任务的数据生成与评估。我们使用Firecrawl加载器从网页获取内容,并利用NVIDIA的Nemotron奖励模型对生成的数据进行评分和过滤。最后,通过设定阈值筛选高质量的数据条目。整个过程包括安装依赖、输入API密钥、定义数据生成函数、评估生成数据的质量以及过滤低质量数据。此方法适用于需要评估和优化AI生成内容的各种场景。
容器服务:智算时代云原生操作系统及月之暗面Kimi、深势科技实践分享
容器技术已经发展成为云计算操作系统的关键组成部分,向下高效调度多样化异构算力,向上提供统一编程接口,支持多样化工作负载。阿里云容器服务在2024年巴黎奥运会中提供了稳定高效的云上支持,实现了子弹时间特效等创新应用。此外,容器技术还带来了弹性、普惠的计算能力升级,如每分钟创建1万Pod和秒级CPU资源热变配,以及针对大数据与AI应用的弹性临时盘和跨可用区云盘等高性能存储解决方案。智能运维方面,推出了即时弹性节点池、智能应用弹性策略和可信赖集群托管运维等功能,进一步简化了集群管理和优化了资源利用率。
阿里云弹性计算稳定性最佳实践
本文介绍了ECS实例稳定性最佳实践的重要性及其具体实施方法。首先,阐述了ECS作为底层基础设施,其稳定性对业务连续性至关重要,并通过一系列工程化方法构建稳定的基础架构。其次,详细描述了用户如何通过合适规格选择、操作系统更新、事件响应机制等手段规避风险,提升业务稳定性。此外,还探讨了实例Panic风险消除、故障诊断及自动分析等技术细节,以及通过云助手插件实现自动化监控和故障处理的最佳实践。最后,分享了制造业客户的实际案例,展示了如何有效解决大规模Panic事件,确保业务的持续稳定运行。通过这些措施,用户可以充分利用ECS的稳定性优势,保障业务的高效与可靠。
推理降本与提升资源效率的实践
本课程从业务角度探讨大模型推理部署及资源利用率提升。首先分析大模型与GPU发展趋势,包括模型开源、规模增长及多模态能力增强;其次介绍高效部署大模型推理业务的步骤,涵盖业务场景选择、架构优化及显存规划;接着讲解如何通过DeepCPU-LLM框架和DeepNCCL通讯库优化推理效率;最后探讨通过KuberGPU实现细粒度GPU资源管理,提升整体资源利用率,降低推理成本。
灵骏智算实例异常预测技术
本文介绍了灵骏智算实例异常预测技术,旨在提前预测GPU等设备的故障,确保大模型训练的稳定性。文章首先探讨了为何需要进行异常预测,指出大规模GPU集群在大模型训练中面临的稳定性挑战。接着阐述了预测的可行性和原理,通过分析复杂系统中的小异常逐步积累导致故障的现象,利用时序指标和关键指标分布模式进行预测。目前该技术可在1-250分钟内提前预测故障,准确率达95%以上,召回率超过20%。最后介绍了系统的集成与应用,强调了端侧部署预测模型的优势,包括降低网络开销、保护用户数据隐私等。
Qwen for Tugraph:自然语言至图查询语言翻译大模型微调最佳实践
在图数据库的应用场景中,自然语言至图查询语言的高效转换一直是行业中的重要挑战。本次实践基于阿里云 Qwen 大模型,围绕 TuGraph 图数据库的需求,探索并验证了一套高效的大模型微调方案,显著提升了模型生成 Cypher 查询语句的能力。通过数据清洗、两阶段微调方法以及两模型推理框架等一系列创新策略,我们成功解决了图查询语言翻译任务中的核心问题。本文将从背景与目标、数据准备与清洗、微调框架设计、Prompt设计与优化、模型推理、最佳实践效果以及前景展望等六个部分出发,向读者逐步介绍我们的方案。
深度揭秘复杂异构硬件推理优化
本文介绍了大语言模型在部署推理层面的性能优化工作,涵盖高性能算子、量化压缩、高效运行时及分布式调度四个方面。面对参数和上下文规模增长带来的显存、缓存与计算开销挑战,文中详细探讨了如何通过优化算子性能、低精度量化压缩、异步运行时框架设计以及多层次分布式架构来提升大模型推理效率。此外,还展示了BladeLLM引擎框架的实际应用效果,证明了这些技术在高并发场景下的显著性能提升。
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
GPU安全容器面临的问题和挑战
本次分享由阿里云智能集团弹性计算高级技术专家李亮主讲,聚焦GPU安全容器面临的问题与挑战。内容分为五个部分:首先介绍GPU安全容器的背景及其优势;其次从安全、成本和性能三个维度探讨实践中遇到的问题及应对方案;最后分享GPU安全容器带状态迁移的技术路径与应用场景。在安全方面,重点解决GPU MMIO攻击问题;在成本上,优化虚拟化引入的内存开销;在性能上,提升P2P通信和GPU Direct的效率。带状态迁移则探讨了CRIU、Hibernate及VM迁移等技术的应用前景。