ROS Moveit 配置全网最详细教程
本文是关于ROS Moveit配置的全网最详细教程,提供了一键安装脚本,以及如何使用Moveit进行机器人运动规划的详细步骤和说明。文中还深入解析了Moveit的配置包文件、Moveit的源码,以及如何使用不同的运动规划算法(如CHOMP、LERP、STOMP)进行路径规划。
2.9 手写数字识别之恢复训练
这篇文章介绍了如何在飞桨(PaddlePaddle)框架中实现手写数字识别模型的恢复训练,包括保存和加载模型参数以及优化器状态,确保训练过程在中断后能够从上次保存的状态继续进行。
2.8 手写数字识别之训练调试与优化
这篇文章讨论了在手写数字识别任务中,如何通过模型训练过程中的调试和优化来提高模型的真实效果,包括计算分类准确率、检查模型训练过程、加入校验或测试来评估模型效果、避免过拟合以及使用可视化分析工具等方法。
2.7 手写数字识别之资源配置
这篇文章讨论了在深度学习任务中,如何通过资源配置优化提升模型训练效率,包括程序运行的全局设备设置、单GPU训练、分布式训练(模型并行和数据并行)以及多GPU训练的启动方式,特别介绍了飞桨框架在单机多卡训练中的简便性。
云原生架构下的高性能计算解决方案:利用分布式计算资源加速机器学习训练
【8月更文第19天】随着大数据和人工智能技术的发展,机器学习模型的训练数据量和复杂度都在迅速增长。传统的单机训练方式已经无法满足日益增长的计算需求。云原生架构为高性能计算提供了新的可能性,通过利用分布式计算资源,可以在短时间内完成大规模数据集的训练任务。本文将探讨如何在云原生环境下搭建高性能计算平台,并展示如何使用 PyTorch 和 TensorFlow 这样的流行框架进行分布式训练。