基于Knative的LLM推理场景弹性伸缩方案
Knative的基于请求弹性配置与大语言模型(LLM)的推理场景高度契合。此外,它的资源降配特性可以显著帮助用户降低成本。本文详细介绍基于 Knative 的 LLM 推理场景弹性伸缩方案。
AI运用爆发时代, 视频服务云原生底座“视频云”架构的全智能再进化
本文介绍了AI运用爆发时代下,视频服务云原生底座“视频云”架构的全智能再进化。随着AI技术的发展,视频内容和交互方式正经历深刻变革。文章从背景、视频AI应用挑战、视频云网端底座、AIGC时代的全智能化及未来展望五个方面展开讨论。重点阐述了云、网、端三者如何深度融合,通过AI赋能视频采集、生产、分发和消费全流程,实现视频处理的智能化和高效化。同时,展望了未来AI在视频领域的创新应用和潜在的杀手级应用。
AI时代下, 边缘云上的技术演进与场景创新
本文介绍了AI时代下边缘云的技术演进与场景创新。主要内容分为三部分:一是边缘云算力形态的多元化演进,强调阿里云边缘节点服务(ENS)在全球600多个节点的部署,提供低时延、本地化和小型化的价值;二是边缘AI推理的创新发展与实践,涵盖低时延、资源广分布、本地化及弹性需求等优势;三是云游戏在边缘承载的技术演进,探讨云游戏对边缘计算的依赖及其技术方案,如多开技术、云存储和网络架构优化,以提升用户体验并降低成本。文章展示了边缘云在未来智能化、实时化解决方案中的重要性。
Lindorm:基于多模数据服务的一站式智能检索基础设施
Lindorm 是阿里云推出的一款基于多模数据服务的一站式智能检索基础设施,专为AI时代设计。它融合了全文检索、向量搜索和AI推理能力,支持结构化、半结构化及非结构化数据的高效处理。Lindorm 提供统一API接口,具备高弹性、低成本和易用性,帮助开发者快速构建和迭代智能搜索应用,适用于大规模智能搜索场景。此外,Lindorm 支持分布式存储与计算引擎,优化了资源管理和运维效率,极大降低了开发复杂度,助力企业实现智能化转型。
Tair:基于KV缓存的推理加速服务
Tair 是阿里云基于KV缓存的推理加速服务,旨在优化大模型推理过程中的性能与资源利用。内容分为三部分:首先介绍大模型推理服务面临的挑战,如性能优化和服务化需求;其次讲解Nvidia TensorRT-LLM推理加速库的特点,包括高性能、功能丰富和开箱即用;最后重点介绍基于KVCache优化的推理加速服务,通过Tair的KV缓存技术提升推理效率,特别是在处理长上下文和多人对话场景中表现出色。整体方案结合了硬件加速与软件优化,实现了显著的性能提升和成本降低。
AnalyticDB MySQL版:云原生离在线一体化数据仓库支持实时业务决策
AnalyticDB MySQL版是阿里云推出的云原生离在线一体化数据仓库,支持实时业务决策。产品定位为兼具数据库应用性和大数据处理能力的数仓,适用于大规模数据分析场景。核心技术包括混合负载、异构加速、智能弹性与硬件优化及AI集成,支持流批一体架构和物化视图等功能,帮助用户实现高效、低成本的数据处理与分析。通过存算分离和智能调度,AnalyticDB MySQL可在复杂查询和突发流量下提供卓越性能,并结合AI技术提升数据价值挖掘能力。
MiniMax云上AI数据湖最佳实践
本简介介绍MiniMax云上AI数据湖的最佳实践。MiniMax成立于2021年,专注于通用人工智能领域,提供ToB和C端产品。面对每日3万亿token、2000万张图片及7万小时语音数据的处理需求,MiniMax基于阿里云构建了稳定灵活的基础设施,采用多云策略实现全球化部署。通过引入Kubernetes、Ray等技术,优化了多模态数据处理效率,并利用对象存储与数据湖技术降低成本。此外,与阿里云合作开发边缘缓存方案,提升跨地域数据传输效率。主讲人:阿里云弹性计算技术专家高庆端。
面向AI的存储软硬结合实践和创新
本次分享的主题是面向AI的存储软硬结合实践和创新,由阿里云智能集团专家袁茂军、王正勇和常存银主讲。内容涵盖三大板块:自研存储部件设计及实践、自研存储服务器设计及实践、以及面向AI场景的存储软硬一体解决方案及实践。重点介绍AliFlash系列存储部件的演进与优化,包括QLC SSD的设计挑战与解决方案,并探讨了高性能存储服务器在AI场景中的应用与未来发展方向。通过软硬件深度融合,旨在提升AI业务的性能与效率,降低总拥有成本(TCO)。
面向AGI时代的数据存储、管理与应用
本次分享由阿里云智能集团解决方案架构师王太平主讲,主题为面向AGI时代的数据存储、管理与应用。内容涵盖AGI的演进、人工智能发展的关键因素、开发框架对存储基础设施的挑战、数据预处理、大数据训练、微调、推理及落地过程。重点讨论了阿里云在数据存储和管理方面的设计与实践,包括高性能存储、成本优化和数据安全检测等功能,旨在应对AI时代的复杂需求。