算法

首页 标签 算法
# 算法 #
关注
124221内容
01 | 线性结构检索:从数组和链表的原理初窥检索本质
本文探讨数组与链表的检索原理及效率。数组依托连续存储支持随机访问,适合二分查找,实现O(log n)高效检索;链表则因非连续存储仅支持顺序访问,检索效率为O(n),但插入删除更灵活。通过理解二者存储特性对检索的影响,掌握“合理组织数据以缩小查询范围”的核心思想,为构建高效算法和数据结构打下基础。
二叉树基础及常见类型
二叉树是最核心的数据结构之一,不仅是红黑树、堆、字典树等复杂结构的基础,更体现了递归的思维方式。掌握二叉树,等于掌握了算法与数据结构的钥匙。从满二叉树、完全二叉树到二叉搜索树,各类变体应用广泛。通过链式存储或邻接表均可实现,是刷题与实战的必备基础。
17 | 存储系统:从检索技术角度剖析 LevelDB 的架构设计思想
LevelDB是Google开源的高性能键值存储系统,基于LSM树优化,采用跳表、读写分离、SSTable分层与滚动合并等技术,结合BloomFilter、缓存机制与二分查找,显著提升读写效率,广泛应用于工业级系统中。(239字)
19 | 广告系统:广告引擎如何做到在 0.1s 内返回广告信息
广告系统是互联网核心营收支柱,支撑Google、Facebook等巨头超80%收入。它需在0.1秒内完成百万级广告实时检索,属高并发、低延迟典型。本文以展示广告为例,解析其引擎架构:通过标签构建倒排索引,结合树形分片、向量检索与非精准打分预筛,优化召回效率;再用深度学习精准排序,提升匹配度。同时,在索引构建时前置过滤无效广告,压缩检索空间,并依赖全量+增量机制实现实时更新。整体设计兼顾性能与效果,实现千人千面的高效投放。
12 | 非精准 Top K 检索:如何给检索结果的排序过程装上加速器
本文介绍了非精准 Top K 检索的优化思路与三种实现方法:基于静态质量得分排序截断、胜者表利用词频打分、分层索引两阶段检索。核心思想是将复杂计算移至离线,在线快速截断,降低打分开销。结合精准检索的两阶段架构,可显著提升检索效率,广泛应用于搜索与推荐系统中。
15 | 最近邻检索(上):如何用局部敏感哈希快速过滤相似文章?
在搜索引擎与推荐系统中,相似文章去重至关重要。通过向量空间模型将文档转化为高维向量,利用SimHash等局部敏感哈希技术生成紧凑指纹,结合海明距离与抽屉原理分段索引,可高效检索近似重复内容,在百亿网页中快速过滤雷同结果,提升用户体验。该方法适用于文本、图像等多种对象的相似性检测。
二叉树的递归/层序遍历
本文详解二叉树的两种遍历方式:DFS(递归遍历)和BFS(层序遍历)。DFS通过递归按“左→右”顺序遍历,前/中/后序取决于代码位置;BFS借助队列实现逐层遍历,常用于求最短路径。三种BFS写法逐步进阶,适用于不同场景。DFS适合找所有路径,BFS更优解最短路径问题。
|
5天前
|
特别加餐 | 倒排检索加速(一):工业界如何利用跳表、哈希表、位图进行加速?
本文深入解析倒排索引在工业界如何通过跳表、哈希表和位图加速求交集操作,并介绍Roaring Bitmap如何融合三种基础数据结构优势,在存储与性能间取得平衡,是基础算法在实际系统中综合应用的典范。
|
5天前
|
测一测丨检索算法基础,你掌握了多少?
本文解析了多种数据结构的查询效率与适用场景,涵盖无序/有序数组、链表、二叉检索树、跳表、哈希表、位图及布隆过滤器等。重点比较了它们在插入、查找、遍历等操作的时间空间代价,并探讨了倒排索引的设计原理与应用,如搜索引擎中的高效检索策略。同时指出各类结构的优缺点:如哈希表查询快但空间开销大,有序数组紧凑但插入慢,二叉搜索树性能依赖平衡性等。还澄清了常见误区,例如二分查找不适用于链表,开放寻址法中不能用二分查找解决冲突等。最后通过布隆过滤器和倒排索引的实际案例,说明如何根据业务需求选择合适的数据结构以优化系统性能。
|
5天前
|
06丨数据库检索:如何使用 B+ 树对海量磁盘数据建立索引?
本节深入探讨磁盘环境下大规模数据检索的挑战与解决方案,重点讲解B+树如何通过索引与数据分离、多阶平衡树结构及双向链表优化,实现高效磁盘I/O和范围查询,广泛应用于数据库等工业级系统。
免费试用