读Flink源码谈设计:流批一体的实现与现状
在Dataflow相关的论文发表前,大家都往往认为需要两套API来实现流计算和批计算,典型的实现便是Lambda架构。
CLIP的升级版Alpha-CLIP:区域感知创新与精细控制
为了增强CLIP在图像理解和编辑方面的能力,上海交通大学、复旦大学、香港中文大学、上海人工智能实验室、澳门大学以及MThreads Inc.等知名机构共同合作推出了Alpha-CLIP。这一创新性的突破旨在克服CLIP的局限性,通过赋予其识别特定区域(由点、笔画或掩码定义)的能力。Alpha-CLIP不仅保留了CLIP的视觉识别能力,而且实现了对图像内容强调的精确控制,使其在各种下游任务中表现出色。
在阿里云上打造强大的模型训练服务
随着人工智能技术的迅猛发展,模型训练服务变得愈发关键。阿里云提供了一系列强大的产品,使得在云端轻松搭建、优化和管理模型训练变得更加便捷。本文将详细介绍如何使用阿里云的相关产品构建高效的模型训练服务。
基于 Flink CDC 打造企业级实时数据集成方案
阿里云智能 Flink 数据通道负责人,Flink CDC 开源社区负责人,Flink PMC Member & Committer 徐榜江在 2023 云栖大会开源大数据专场的分享。
【云栖2023】李钰:阿里云 E-MapReduce 全面开启 Serverless 时代
本文根据 2023 云栖大会,阿里云资深技术专家、阿里云开源大数据平台EMR负责人李钰演讲实录整理而成。
机器学习面试笔试知识点-决策树、随机森林、梯度提升决策树(GBDT)、XGBoost、LightGBM、CatBoost
机器学习面试笔试知识点-决策树、随机森林、梯度提升决策树(GBDT)、XGBoost、LightGBM、CatBoost
“Zero-shot Learning”、“One-shot Learning”和“Few-shot Learning”
你知道吗?在机器学习的世界里,有一种名为“Zero-shot Learning”、“One-shot Learning”和“Few-shot Learning”的策略,它们主要是为了解决神经网络模型因为训练数据少,导致模型泛化能力差的问题。
使用FastAPI部署Ultralytics YOLOv5模型
YOLO是You Only Look Once(你只看一次)的缩写,它具有识别图像中的物体的非凡能力,在日常应用中会经常被使用。所以在本文中,我们将介绍如何使用FastAPI的集成YOLOv5,这样我们可以将YOLOv5做为API对外提供服务。
Python时间序列分析库介绍:statsmodels、tslearn、tssearch、tsfresh
时间序列分析在金融和医疗保健等领域至关重要,在这些领域,理解随时间变化的数据模式至关重要。在本文中,我们将介绍四个主要的Python库——statmodels、tslearn、tssearch和tsfresh——每个库都针对时间序列分析的不同方面进行了定制。这些库为从预测到模式识别的任务提供了强大的工具,使它们成为各种应用程序的宝贵资源。
C#WPF 图片在显示时没有问题,但在运行时图片显示不出来的解决
选中项目,点击右上角的显示全部文件按钮,会将默认隐藏的文件显示出来,选中所需图片,右键,添加到项目,然后选择图片查看属性,生成操作选择resource。完毕。本人目前的解决方案。
TimesNet:时间序列预测的最新模型
2023年4月发表了一个新的模型,它在时间序列分析的多个任务中实现了最先进的结果,如预测、imputation、分类和异常检测:TimesNet。
5分钟生成可视化数据分析报告
基于内置电商、广告、出行、汽车、国内生产总值等公开数据集,通过DataWorks与MaxCompute搭建可视化数据报告。
阿里云PAI-灵骏大模型训练工具Pai-Megatron-Patch正式开源!
随着深度学习大语言模型的不断发展,其模型结构和量级在快速演化,依托大模型技术的应用更是层出不穷。对于广大开发者来说不仅要考虑如何在复杂多变的场景下有效的将大模型消耗的算力发挥出来,还要应对大模型的持续迭代。开发简单易用的大模型训练工具就成了应对以上问题广受关注的技术方向,让开发者专注于大模型解决方案的开发,降低大模型训练加速性能优化和训练/推理全流程搭建的人力开发成本。阿里云机器学习平台PAI开源了业内较早投入业务应用的大模型训练工具Pai-Megatron-Patch,本文将详解Pai-Megatron-Patch的设计原理和应用。
阿里云 Elasticsearch 使用 RRF 混排优化语义查询结果对比
Elasticsearch 从8.8版本开始,新增 RRF,支持对多种不同方式召回的多个结果集进行综合再排序,返回最终的排序结果。之前 Elasticsearch 已经分别支持基于 BM25 的相关性排序和向量相似度的召回排序,通过 RRF 可以对这两者的结果进行综合排序,可以提升排序的准确性。
如何在Blender中压缩/减小GLTF模型的大小
Blender是一款功能强大的开源软件,旨在创建3D图形,动画和视觉效果。它支持多种文件格式的导入和导出,包括GLB,GLTF,DAE,OBJ,ABC,USD,BVH,PLY,STL,FBX和X3D。这种适应性使其成为各种3D项目和工作流程的宝贵工具。(https://www.blender.org/download/)。
数据质量最佳实践(5):利用质量分和排行榜提升企业数据质量【Dataphin V3.12】
在数据质量最佳实践(3):通过质量治理工作台,实现质量问题的跟踪和处理这篇文章中,我们详细的介绍了如何通过治理工作台,对系统出现的一个一个具体质量问题进行治理。 但是对于企业整体的数据质量情况,我们该如何评估呢?以及如何寻找当前企业的数据质量短板,并有针对性的进行改进和提升呢? 在Dataphin V3.12版本中,质量新增了质量分的能力,可以给数据表和质量规则配置打分权重和打分方式,从而获得全局、数据源、项目、负责人、数据表等维度的质量打分评估,帮助CDO判断企业整体的数据质量情况和数据质量问题的分布,从而有针对性的提升企业整体的数据质量水平。
算力中国年度突破成果出炉,PAI灵骏智算上榜!
近日,由工业和信息化部、宁夏回族自治区人民政府共同举办的2023中国算力大会在银川举行。会上公布了算力领域最具影响力专家学者共同评选出的算力中国·年度突破成果,阿里云“PAI灵骏智算服务”作为国内AI智算基础设施代表获得该重磅奖项。
Fooocus:一个简单且功能强大的Stable Diffusion webUI
Stable Diffusion是一个强大的图像生成AI模型,但它通常需要大量调整和提示工程。Fooocus的目标是改变这种状况。
区间预测 | MATLAB实现基于QRCNN-LSTM-Multihead-Attention多头注意力卷积长短期记忆神经网络多变量时间序列区间预测
区间预测 | MATLAB实现基于QRCNN-LSTM-Multihead-Attention多头注意力卷积长短期记忆神经网络多变量时间序列区间预测
神经网络:模拟人脑以实现智能决策
神经网络作为模拟人脑神经元工作原理的模型,在人工智能领域发挥了重要作用。从图像识别到自然语言处理,神经网络在多个领域展现出强大的能力。随着技术的不断进步,神经网络有望在未来实现更高级别的智能决策,为人工智能的发展带来新的机遇和挑战。
MaxCompute湖仓一体近实时增量处理技术架构揭秘
本文将介绍阿里云云原生大数据计算服务MaxCompute湖仓一体近实时增量处理技术架构的核心设计和应用场景。
如何实时统计最近 15 秒的商品销售额|Flink-Learning 实战营
想要了解如何使用 Flink 实时统计最近 15 秒的商品销售额吗?本实验将以阿里云实时计算 Flink 版为基础,使用 Flink 自带的 MySQL Connector 连接 RDS 云数据库实例,并以实时商品销售数据统计的例子,引导开发者上手 Connector 的数据捕获、数据写入等功能。
5 分钟上手 Flink MySQL 连接器实验手册|Flink-Learning 实战营
加入 Flink-Learning 实战营,动手体验真实有趣的实战场景。只需 2 小时,让您变身 Flink 实战派。实战营采取了 Flink 专家在线授课,专属社群答疑,小松鼠助教全程陪伴的学习模式。
开源大数据平台 E-MapReduce Serverless StarRocks 产品介绍
本文将分享阿里云与 StarRocks 社区合作打造的云上 StarRocks 极速湖仓的云原生产品实践。 主要包括四个部分,第一部分介绍 StarRocks 全托管形态,以及免运维服务的 OLAP 云产品;第二部 分介绍 StarRocksManager 的实例管理、诊断分析、元数据管理、安全中心等功能;第三部分介绍 在社交、在线教育、电商等场景的使用案例;最后是对产品的长短期规划。
深度学习:在阿里云上搭建notebook深度学习开发环境
随着AIGC浪潮席卷,再次迎来深度学习热潮。《动手学深度学习 PyTorch版》这本书,注重实战演练,通过手动运行、编写源码可很好的加深对深度学习理论的理解,该书在B站等网站上还有李沐录制的讲解视频,降低了学习门槛,值得推荐。 在阿里云上搭建notebook开发环境过程中踩过一些坑,此文可避免读者重复踩坑。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。