区间预测 | MATLAB实现基于QRCNN-LSTM-Multihead-Attention多头注意力卷积长短期记忆神经网络多变量时间序列区间预测

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 区间预测 | MATLAB实现基于QRCNN-LSTM-Multihead-Attention多头注意力卷积长短期记忆神经网络多变量时间序列区间预测

区间预测 | MATLAB实现基于QRCNN-LSTM-Multihead-Attention多头注意力卷积长短期记忆神经网络多变量时间序列区间预测

效果一览

image.png
image.png
image.png
image.png

基本介绍

1.Matlab实现基于QRCNN-LSTM-Multihead-Attention卷积神经网络结合长短期记忆神经网络多头注意力多变量时间序列区间预测;
2.多图输出、点预测多指标输出(MAE、MAPE、RMSE、MSE、R2),区间预测多指比输出(区间覆盖率PICP、区间平均宽度百分比PINAW),多输入单输出,含点预测图、不同置信区间预测图、误差分析图、核密度估计概率密度图;
3.data为数据集,功率数据集,用多个关联变量,预测最后一列功率数据,也可适用于负荷预测、风速预测;MainQRCNN_LSTM_MATTNTS为主程序,其余为函数文件,无需运行;
4.代码质量高,注释清楚,含数据预处理部分,处理缺失值,如果为nan,则删除,也含核密度估计;
5.运行环境Matlab2021及以上。

模型描述

多头注意力卷积长短期记忆神经网络(Multi-Head Attention Convolutional LSTM,MHAC-LSTM)是一种用于处理多变量时间序列预测问题的深度学习模型。它将卷积神经网络(CNN)和长短期记忆神经网络(LSTM)结合起来,并使用多头注意力机制来增强模型的表达能力。
每个输入时间序列的变量都经过一个卷积层进行特征提取,并将卷积层的输出传递给一个LSTM层进行时间序列建模。然后,多头注意力机制被应用于LSTM层的输出,以捕捉不同变量之间的关系和重要性,从而提高模型的预测性能。总的来说是一种强大的深度学习模型,适用于多变量时间序列预测问题,尤其是区间预测问题。它可以通过结合卷积、LSTM和注意力机制来捕捉输入数据的空间和时间特征,并在预测时考虑不同变量之间的关系,从而提高预测精度。
多头注意力(Multi-Head Attention)是一种用于增强神经网络表达能力的机制,常用于处理序列数据的建模任务,如机器翻译、语言生成和语音识别等。
在传统的注意力机制中,模型通过计算输入序列中每个位置与目标位置的相关性,来计算每个输入位置对目标位置的影响权重。而多头注意力则通过将多个独立的注意力机制结合起来,来捕捉到不同的相关性表示。
具体来说,多头注意力将输入序列划分为多个头(head),并为每个头分配一组参数,然后在每个头中应用单独的注意力机制。这样,模型可以同时学习多个相关性表示,提高了模型对输入的表达能力。
在计算多头注意力时,模型首先将输入通过多个独立的线性变换映射到不同的空间中,然后对每个头中的映射结果进行注意力计算。最后,将每个头的注意力计算结果通过另一个线性变换进行合并,并通过激活函数进行输出。
多头注意力的优点在于它可以同时捕捉到多种相关性表示,从而提高模型的表达能力和泛化能力。此外,多头注意力还可以通过堆叠多层来进一步提高模型的表达能力,形成所谓的多层多头注意力(Multi-Layer Multi-Head Attention)。
多头注意力已经被广泛应用于自然语言处理、图像处理和语音处理等领域,成为深度学习中的一种重要建模工具。

程序设计

  • 完整程序和数据获取方式:私信博主。
ntrain=round(nwhole*num_size);
    ntest =nwhole-ntrain;
    % 准备输入和输出训练数据
    input_train =input(:,temp(1:ntrain));
    output_train=output(:,temp(1:ntrain));
    % 准备测试数据
    input_test =input(:, temp(ntrain+1:ntrain+ntest));
    output_test=output(:,temp(ntrain+1:ntrain+ntest));
    %% 数据归一化
    method=@mapminmax;
    [inputn_train,inputps]=method(input_train);
    inputn_test=method('apply',input_test,inputps);
    [outputn_train,outputps]=method(output_train);
    outputn_test=method('apply',output_test,outputps);
    % 创建元胞或向量,长度为训练集大小;
    XrTrain = cell(size(inputn_train,2),1);
    YrTrain = zeros(size(outputn_train,2),1);
    for i=1:size(inputn_train,2)
        XrTrain{i,1} = inputn_train(:,i);
        YrTrain(i,1) = outputn_train(:,i);
    end
    % 创建元胞或向量,长度为测试集大小;
    XrTest = cell(size(inputn_test,2),1);
    YrTest = zeros(size(outputn_test,2),1);
    for i=1:size(input_test,2)
        XrTest{i,1} = inputn_test(:,i);
        YrTest(i,1) = outputn_test(:,i);
    end

    %% 创建混合CNN-LSTM网络架构
%%  区间覆盖率
RangeForm = [T_sim(:, 1), T_sim(:, end)];
Num = 0;

for i = 1 : length(T_train)
    Num = Num +  (T_train(i) >= RangeForm(i, 1) && T_train(i) <= RangeForm(i, 2));
end

picp = Num / length(T_train);     


    S = cumtrapz(X,Y);
    Index = find(abs(m-S)<=1e-2);
    Q = X(max(Index));

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340
相关文章
|
26天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
165 80
|
3月前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
488 2
|
14天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
3月前
|
存储 数据处理 索引
MATLAB中的基本数据类型与变量操作
【10月更文挑战第1天】 MATLAB 是一种广泛应用于数学计算和科学研究的编程语言,其核心是矩阵运算。本文详细介绍了 MATLAB 中的基本数据类型,包括数值类型(如 `double` 和 `int`)、字符数组、逻辑类型、结构体、单元数组和函数句柄,并通过代码示例展示了变量操作方法。
254 0
|
10天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
20天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
22天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
1月前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
17天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。