海量数据场景下机器学习模型训练方案
实际处理和解决机器学习工程化问题过程中,我们很难通过单点完成机器学习模型的训练。这些场景包括在线推荐,CTR预估,Lookalike营销等,当有上亿条数据,上千上万维特征,这些应用涉及到的数据量在10G以上甚至TB级别,那么该如何基于海量数据来训练模型呢?
【机器学习PAI实践二】人口普查统计
产品地址:https://data.aliyun.com/product/learn?spm=a21gt.99266.416540.102.OwEfx2
一、背景
感谢大家关注玩转数据系列文章,我们希望通过在阿里云机器学习平台上提供demo数据并搭建相关的实验流程的方式来帮助大家学习如何通过算法来挖掘数据中的价值。本系列文章包含详细的实验流程以及相关的文档教程,欢迎大
DSW:面向AI研发的集成开发平台
DSW(Data Science Workshop)是阿里巴巴PAI团队根据多年的AI算法和产品研发经验积累,围绕提高AI算法研发效率,降低研发成本而推出的一款适用于各类AI开发者的云端机器学习集成开发环境。
pokemon
利用精灵能力值判断精灵是否为极品精灵<br />数据源:kaggle<br />数据大小:16.5 KB<br />字段数量:12<br />使用组件:读数据表,拆分<br />
CTR_GBDT_LR_TEST
实践分享:CTR中的GBDT+LR融合方案<br />数据源:internet<br />数据大小:770 KB<br />字段数量:20<br />使用组件:拆分,读数据表,特征编码<br />