人工智能平台 PAI

首页 标签 人工智能平台 PAI
Matlab+Yalmip求解鲁棒优化编程实战
去年发布了使用Yalmip工具箱求解鲁棒优化问题的博客之后,陆陆续续有朋友问我相关的问题,有人形容从学习这篇博客到求解论文中的鲁棒优化问题,就好像刚学会求导公式,就要去做高考压轴题,根本无从下手。为了解决这个问题,这篇博客将手把手地教会大家如何使用Matlab+ yalmip+cplex(当然其他的求解器比如gurobi也是可以的)求解论文中的鲁棒优化问题。
BioEmu:微软黑科技炸场!生成式AI重构蛋白质模拟:千倍效率碾压传统计算,新药研发周期砍半
BioEmu 是微软推出的生成式深度学习系统,可在单个 GPU 上每小时生成数千种蛋白质结构样本,支持模拟动态变化、预测热力学性质,并显著降低计算成本。
云上玩转DeepSeek系列之五:实测优化16%, 体验FlashMLA加速DeepSeek-V2-Lite推理
DeepSeek-AI 开源的 FlashMLA 是一个优化多层注意力机制的解码内核,显著提升大语言模型的长序列处理和推理效率。本文介绍了如何在 PAI 平台上安装并使用 FlashMLA 部署 DeepSeek-V2-Lite-Chat 模型。通过优化后的 FlashMLA,实现了约 16% 的性能提升。
DistillQwen-ThoughtY:通过变长思维链蒸馏,全面提升模型推理能力!
阿里云 PAI 团队基于 EasyDistill 框架,创新性地采用推理冗余度(RV)和认知难度(CD)双指标筛选机制,实现思维链与模型能力的精准匹配,发布新一代推理模型 DistillQwen-ThoughtY。相关模型和数据集已在 hugging face/ModelScope 等开源社区开放,配套 EasyDistill 框架支持高效知识蒸馏。近期内将推出 DistillQwen-ThoughtY 模型在 PAI-ModelGallery 的一键部署、训练和评测实践。
Post-Training on PAI (4):模型微调SFT、DPO、GRPO
阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
手机端网站建设:响应式设计主导下的工具选取与实施步骤
移动互联网时代,响应式设计已成手机端建站主流,无需单独搭建手机端。本文以 PageAdmin CMS 为例,阐述其原生响应式架构、轻量化等适配优势,详细拆解从前期规划、环境安装、响应式模板适配、内容优化,到测试上线与后期维护的全流程,该方案适配中小规模站点,能降低开发维护成本,保障多端用户体验一致性。
基于实时深度学习的推荐系统架构设计和技术演进
整理自 5 月 29 日 阿里云开发者大会,秦江杰和刘童璇的分享,内容包括实时推荐系统的原理以及什么是实时推荐系统、整体系统的架构及如何在阿里云上面实现,以及关于深度学习的细节介绍
免费试用