云原生数据仓库AnalyticDB MySQL版

首页 标签 云原生数据仓库AnalyticDB MySQL版
# 云原生数据仓库AnalyticDB MySQL版 #
关注
5420内容
揭秘Polardb与OceanBase:从OLTP到OLAP,你的业务选对数据库了吗?热点技术对比,激发你的选择好奇心!
【8月更文挑战第22天】在数据库领域,阿里巴巴的Polardb与OceanBase各具特色。Polardb采用共享存储架构,分离计算与存储,适配高并发OLTP场景,如电商交易;OceanBase利用灵活的分布式架构,优化数据分布与处理,擅长OLAP分析及大规模数据管理。选择时需考量业务特性——Polardb适合事务密集型应用,而OceanBase则为数据分析提供强大支持。
数据不用搬,AI直接炼!阿里云AnalyticDB AI数据湖仓一站式融合AI+BI
阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL版(以下简称ADB)诞生于高性能实时数仓时代,实现了PB级结构化数据的高效处理和分析。在前几年,为拥抱大数据的浪潮,ADB从传统数仓拓展到数据湖仓,支持Paimon/Iceberg/Delta Lake/Hudi湖格式,为开放的数据湖提供数据库级别的性能、可靠性和管理能力,从而更好地服务以SQL为核心的大规模数据处理和BI分析,奠定了坚实的湖仓一体基础。
数仓常用分层与维度建模
本文介绍了数据仓库的分层结构和维度建模。数仓通常分为ODS、DIM、DWD、DWS和ADS五层,各层负责不同的数据处理阶段。维度建模是数据组织方法,包括星型和雪花模型。星型模型简单直观,查询性能高,适合简单查询;雪花模型则通过规范化减少冗余,提高数据一致性和结构复杂性,但可能影响查询效率。选择模型需根据业务需求和数据复杂性来定。
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。
数据仓库建设规范
数据仓库层是我们在做数据仓库时要核心设计的一层,在这里,从 ODS 层中获 得的数据按照主题建立各种数据模型。DW 层又细分为 DWD (Data Warehouse Detail) 层、DWM (Data WareHouse Middle) 层和 DWS (Data WareHouse Servce) 层。
免费试用