HIVE

首页 标签 HIVE
# HIVE #
关注
5927内容
Hive简介、什么是Hive、为什么使用Hive、Hive的特点、Hive架构图、Hive基本组成、Hive与Hadoop的关系、Hive与传统数据库对比、Hive数据存储(来自学习资料)
1.1 Hive简介 1.1.1   什么是Hive Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。 1.1.2   为什么使用Hive Ø  直接使用hadoop所面临的问题 人员学习成本太高 项目周期要求太短 MapReduce实现复杂查询逻辑开发难度太大   Ø  为什么要使用Hive 操作接口采用类SQ
Hive怎么调整优化Tez引擎的查询?在Tez上优化Hive查询的指南
在Tez上优化Hive查询,包括配置参数调整、理解并行化机制以及容器管理。关键步骤包括YARN调度器配置、安全阀设置、识别性能瓶颈(如mapper/reducer任务和连接操作),理解Tez如何动态调整mapper和reducer数量。例如,`tez.grouping.max-size` 影响mapper数量,`hive.exec.reducers.bytes.per.reducer` 控制reducer数量。调整并发和容器复用参数如`hive.server2.tez.sessions.per.default.queue` 和 `tez.am.container.reuse.enabled`
数据库必知词汇:数据控制语言DCL
数据控制语言(Data Control Language, DCL)是SQL语言四大主要分类之一,是用来设置或者更改数据库用户或角色权限的语句,通过GRANT或REVOKE实现权限控制,确定单个用户和用户组对数据库对象的访问。某些RDBMS可用GRANT或REVOKE控制对表单个列的访问。在默认状态下,只有sysadmin、dbcreator、db_owner或db_securityadmin等角色的成员才有权利执行数据控制语言。
手把手教你解决 Hive 的数据倾斜
数据倾斜是 Hive 中影响任务执行效率的现象,表现为某些任务处理的数据量或耗时远超其他任务。根本原因是 Shuffle 后 Key 分布不均,导致部分 Reduce 负载过高。常见场景包括空值聚合、不可拆分大文件、数值膨胀、不同数据类型 Join、Count(distinct) 计算以及表 Join 操作。解决方法包括过滤空值、转换数据类型、调整聚合策略、使用 MapJoin 等。通过合理优化,如设置 `hive.groupby.skewindata` 和 `hive.map.aggr` 参数,可以有效缓解数据倾斜问题。
【Hive SQL 每日一题】分析电商平台的用户行为和订单数据
作为一名数据分析师,你需要分析电商平台的用户行为和订单数据。你有三张表:`users`(用户信息),`orders`(订单信息)和`order_items`(订单商品信息)。任务包括计算用户总订单金额和数量,按月统计订单,找出最常购买的商品,找到平均每月最高订单金额和数量的用户,以及分析高消费用户群体的年龄和性别分布。通过SQL查询,你可以实现这些分析,例如使用`GROUP BY`、`JOIN`和窗口函数来排序和排名。
【赵渝强老师】Hive的分区表
Hive的分区表与Oracle、MySQL类似,通过分区条件将数据分隔存储,提高查询效率。本文介绍了静态分区表和动态分区表的创建与使用方法,包括具体SQL语句和执行计划分析,附带视频讲解。静态分区表需显式指定分区条件,而动态分区表则根据插入数据自动创建分区。
免费试用