【动手学计算机视觉】第十五讲:卷积神经网络之LeNet
LeNet是由2019年图灵奖获得者、深度学习三位顶级大牛之二的Yann LeCun、Yoshua Bengio于1998年提出,它也被认为被认为是最早的卷积神经网络模型。但是,由于算力和数据集的限制,卷积神经网络提出之后一直都被传统目标识别算法(特征提取+分类器)所压制。终于在沉寂了14年之后的2012年,AlexNet在ImageNet挑战赛上一骑绝尘,使得卷积神经网络又一次成为了研究的热点。尽管近几年深度卷积网络非常热门,LeNet基本处于被忽略的状态,但是它的思想依然对CNN的学习有着不可忽视的价值。本文就详细介绍一下LeNet的结构,同时会详细介绍网络模型的搭建方法。
深度学习与CV教程(7) | 神经网络训练技巧 (下)
本文讲解训练神经网络的核心方法:优化方式(SGD、动量更新、Nesterov动量、Adagrad、RMSProp、Adam等),正则化(L2、Dropout),迁移学习,模型集成等【对应 CS231n Lecture 7】