NVIDIA Tesla GPU系列P4、T4、P40以及V100参数性能对比
NVIDIA Tesla系列GPU适用于高性能计算(HPC)、深度学习等超大规模数据计算,Tesla系列GPU能够处理解析PB级的数据,速度比使用传统CPU快几个数量级,NVIDIA Tesla GPU系列P4、T4、P40以及V100是Tesla GPU系列的明星产品,云服务器吧分享NVIDIA Tesla GPU系列P4、T4、P40以及V100参数性能对比:
AMD OpenCL大学教程(8)
在本节,我们主要介绍OpenCL中buffer的使用,同时提供了两个个完整的例子,一个是图像的旋转,一个是矩阵乘法(非常简单,没有分块优化)。 1、创建OpenCL设备缓冲(buffer) OpenCL设备使用的数据都存放在设备的buffer中[其实就是device memory中]。
Kinect2.0+Libfreenect2+PCL:实时点云显示
写在前面:生成点云前提是已经安装好了libfreenect2和PCL,网上有许多这方面的大把教程,在这里就不多赘述了。
-->ubuntu16.04,pcl1.8points.push_back( p );//将点P存入cloud
4,viewer.showCloud (cloud);//将cloud可视化
注意:将下列两个文件复制到同一个文件夹中,并在终端中依次执行cmake .,make,便会生成一个可执行文件main,输入./main,就可以显示点云,如果是一片漆黑,是因为我在代码中设置来点云的范围,将if语句去掉即可。
软硬一体的算法实践,阿里云如何以算法实现场景 “再创新”?
音视频消费的新场景催生了越来越多新的技术需求,从当下的直播、点播、RTC,到未来的 XR 和元宇宙,音视频技术对新场景的支撑越来越趋向于综合性,近年来 AI 算法发展迅猛,但是较好的算法效果往往需要消耗很大的算力资源,这使算法商业化落地面临非常大的挑战。我们应该如何充分发挥软硬一体的能力?如何有效平衡算法效果和性能?
在 LiveVideoStackCon2021 北京峰会,阿里云智能视频云高级算法专家杨凤海,从阿里云视频云的最新场景探索出发,带来了阿里云视频云在虚拟背景、视频超分等方向的最佳创新实践经验分享。