带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(2)

简介: 带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(2)

带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(1) https://developer.aliyun.com/article/1248038?groupCode=taobaotech



通用性


1. 支持 Tensorflow、Caffe、ONNX、Torchscripts 等主流模型文件格式,支持CNN / RNN / GAN / Transformer 等主流网络结构。


2. 支持多输入多输出,支持任意维度的输入输出,支持动态输入(输入大小可变),支持带控制流的模型


3. 算子丰富,支持 178 个Tensorflow Op、52个 Caffe Op、142个 Torchscipts Op、158 个 ONNX Op(ONNX 基本完整支持)


4. 支持 服务器 / 个人电脑 / 手机 及具有POSIX接口的嵌入式设备,支持使用设备的 CPU / GPU 计算,支持部分设备的 NPU 计算(IOS 11 + CoreML / Huawei + HIAI)


5. 支持 Windows / iOS 8.0+ / Android 4.3+ / Linux 及具有POSIX接口的操作系统


高性能


1. 对iOS / Android / PC / Server 的CPU架构进行了适配,编写SIMD代码或手写汇编以实现核心运算,充分发挥 CPU的算力,单线程下运行常见CV模型基本达到设备算力峰值。


2. iOS设备上基于 Metal 实现算子以支持GPU加速,常用模型上快于苹果原生的CoreML。


3. Android上提供了OpenCL、Vulkan两套方案,针对主流GPU(Adreno和Mali)做了深度调优,其中 OpenCL 侧重于推理性能极致优化,Vulkan 方案注重较少的初始化时间。


4. 广泛运用了 Winograd 卷积算法提升卷积性能,首次在业界工程实践中实现转置卷积的Winograd算法优化与矩阵乘的Strassen算法优化并取得加速效果。


5. 支持低精度计算( int8 / fp16 / bf16)以提升推理性能。并对 ARMv8.2 和 AVX512架构的相关指令进行了适配,这两种架构下有更好的加速效果。


易用性


1. 支持使用 MNN 的算子进行常用的数值计算,覆盖 numpy 常用功能


2. 提供 MNN CV 模块,支持图像仿射变换与归一化等 MNN_CV 库,支持常用的图像处理(armv7a 架构下小于 100 k )


3. 支持各平台下的模型训练,尤其是移动端上的模型训练


4. 支持 python 接口



带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(3) https://developer.aliyun.com/article/1248036?groupCode=taobaotech

相关文章
|
1天前
|
机器学习/深度学习
深度学习中的正则化技术:防止过拟合的利器
【10月更文挑战第30天】本文将深入探讨深度学习中一个关键概念——正则化,它如同园艺师精心修剪枝叶,确保模型不至于在训练数据的细节中迷失方向。我们将从直观的角度理解正则化的重要性,并逐步介绍几种主流的正则化技术,包括L1和L2正则化、Dropout以及数据增强。每种技术都将通过实际代码示例来展示其应用,旨在为读者提供一套完整的工具箱,以应对深度学习中的过拟合问题。
|
16小时前
|
机器学习/深度学习 人工智能 算法
基于深度学习的地面垃圾识别分类技术
AI垃圾分类系统结合深度学习和计算机视觉技术,实现高效、精准的垃圾识别与自动分类。系统集成高精度图像识别、多模态数据分析和实时处理技术,适用于市政环卫、垃圾处理厂和智能回收设备,显著提升管理效率,降低人工成本。
基于深度学习的地面垃圾识别分类技术
|
2天前
|
机器学习/深度学习 编解码 算法
什么是超分辨率?浅谈一下基于深度学习的图像超分辨率技术
超分辨率技术旨在提升图像或视频的清晰度,通过增加单位长度内的采样点数量来提高空间分辨率。基于深度学习的方法,如SRCNN、VDSR、SRResNet等,通过卷积神经网络和残差学习等技术,显著提升了图像重建的质量。此外,基于参考图像的超分辨率技术通过利用高分辨率参考图像,进一步提高了重建图像的真实感和细节。
|
10天前
|
机器学习/深度学习 监控 自动驾驶
深度学习中的图像识别技术及其应用
【10月更文挑战第20天】本文将探讨深度学习在图像识别领域的应用,包括其原理、关键技术和实践案例。我们将从基础概念出发,逐步深入到模型构建、训练技巧以及性能评估等高级话题。通过实例分析,揭示深度学习如何革新传统图像处理流程,提升识别准确率和效率。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和实用的知识。
|
26天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的图像识别技术
【10月更文挑战第5天】在人工智能的浪潮中,深度学习技术以其卓越的性能和广泛的应用场景成为了科技领域的热点。本文将探讨深度学习在图像识别中的应用,通过实际代码示例,揭示其背后的原理和实现方式。我们将看到,从基础的卷积神经网络到复杂的模型架构,深度学习如何一步步提高图像处理的准确性和效率。
|
20天前
|
机器学习/深度学习 自然语言处理 计算机视觉
深度学习中的迁移学习技术
【10月更文挑战第11天】 本文探讨了深度学习中的迁移学习技术,并深入分析了其原理、应用场景及实现方法。通过实例解析,展示了迁移学习如何有效提升模型性能和开发效率。同时,文章也讨论了迁移学习面临的挑战及其未来发展方向。
|
26天前
|
机器学习/深度学习 自然语言处理 算法框架/工具
深度学习中的正则化技术:从理论到实践
【10月更文挑战第5天】本文将探讨深度学习模型中不可或缺的一环——正则化技术。通过深入浅出的方式,我们将了解正则化在防止过拟合中的作用,并揭示其在模型性能提升中的关键角色。文章不仅涉及理论知识,还结合代码示例,帮助读者从实践中掌握这一技术的应用。
|
27天前
|
机器学习/深度学习 自动驾驶 算法
深度学习中的图像识别技术及其在自动驾驶中的应用
【10月更文挑战第4天】本文深入探讨了深度学习在图像识别领域的应用,并特别关注其在自动驾驶系统中的关键作用。文章首先介绍了深度学习的基本概念和工作原理,随后通过一个代码示例展示了如何利用深度学习进行图像分类。接着,文章详细讨论了图像识别技术在自动驾驶中的具体应用,包括物体检测、场景理解和决策制定等方面。最后,文章分析了当前自动驾驶技术面临的挑战和未来的发展趋势。
35 4
|
27天前
|
机器学习/深度学习 传感器 自动驾驶
深度学习在自动驾驶技术中的革新与挑战
【10月更文挑战第4天】深度学习在自动驾驶技术中的革新与挑战
56 4
|
25天前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
22 1