并行计算

首页 标签 并行计算
# 并行计算 #
关注
4973内容
带你读《基于CUDA的GPU并行程序开发指南》之一:CPU并行编程概述
本书旨在帮助读者了解与基于CUDA的并行编程技术有关的基本概念,并掌握实用c语言进行GPU高性能编程的相关技巧。本书第一部分通过CPU多线程编程解释了并行计算,使得没有太多并行计算基础的读者也能毫无阻碍地进入CUDA天地;第二部分重点介绍了基于CUDA的GPU大规模并行程序的开发与实现,并通过大量的性能分析帮助读者理解如何开发一个好的GPU并行程序以及GPU架构对程序性能的影响;本书的第三部分介绍了一些常用的CUDA库。
社区供稿 | 10G显存,通义千问-7B-int4消费级显卡最佳实践
在魔搭社区,通义千问团队发布了Qwen-7B-Chat的Int4量化模型,Qwen-7B-Chat-Int4。该方案的优势在于,它能够实现几乎无损的性能表现,模型大小仅为5.5GB,内存消耗低,速度甚至超过BF16。
推荐场景GPU优化的探索与实践:CUDA Graph与多流并行的比较与分析
RTP 系统(即 Rank Service),是一个面向搜索和推荐的 ranking 需求,支持多种模型的在线 inference 服务,是阿里智能引擎团队沉淀多年的技术产品。今年,团队在推荐场景的GPU性能优化上又做了新尝试——在RTP上集成了Multi Stream,改变了TensorFlow的单流机制,让多流的执行并行,作为增加GPU并行度的另一种选择。本文详细介绍与比较了CUDA Graph与多流并行这两个方案,以及团队的实践成果与心得。
|
3月前
|
GPU加速TensorFlow模型训练:从环境配置到代码实践的全方位指南,助你大幅提升深度学习应用性能,让模型训练不再等待
【8月更文挑战第31天】本文以随笔形式探讨了如何在TensorFlow中利用GPU加速模型训练,并提供了详细的实践指南。从安装支持GPU的TensorFlow版本到配置NVIDIA CUDA及cuDNN库,再到构建CNN模型并使用MNIST数据集训练,全面展示了GPU加速的重要性与实现方法。通过对比CPU与GPU上的训练效果,突显了GPU在提升训练速度方面的显著优势。最后,还介绍了如何借助TensorBoard监控训练过程,以便进一步优化模型。
高效使用 PyODPS 最佳实践
以更清晰的认知 PyODPS,DataWorks PyODPS 节点以及 PyODPS 何时在计算集群运行,开发者如何利用 PyODPS 更高效地进行数据开发。
PyTorch与CUDA:加速深度学习模型训练的最佳实践
【8月更文第27天】随着深度学习应用的广泛普及,高效利用GPU硬件成为提升模型训练速度的关键。PyTorch 是一个强大的深度学习框架,它支持动态计算图,易于使用且高度灵活。CUDA (Compute Unified Device Architecture) 则是 NVIDIA 开发的一种并行计算平台和编程模型,允许开发者直接访问 GPU 的并行计算能力。本文将详细介绍如何利用 PyTorch 与 CUDA 的集成来加速深度学习模型的训练过程,并提供具体的代码示例。
大模型推理优化实践:KV cache复用与投机采样
在本文中,我们将详细介绍两种在业务中实践的优化策略:多轮对话间的 KV cache 复用技术和投机采样方法。我们会细致探讨这些策略的应用场景、框架实现,并分享一些实现时的关键技巧。
免费试用