图计算

首页 标签 图计算
# 图计算 #
关注
633内容
iPhone手机屏幕尺寸与倍图计算公式(更新至iPhone 14 Plus)
iPhone手机屏幕尺寸与倍图计算公式(更新至iPhone 14 Plus)
图数据挖掘!使用图分析+AI进行保险欺诈检测 ⛵
本文将基于保险欺诈场景案例讲解如何进行有效的图挖掘,并将挖掘到的信息提供给AI模型,辅助精准检测和识别商业保险欺诈。
【Pytorch神经网络理论篇】 25 基于谱域图神经网络GNN:基础知识+GNN功能+矩阵基础+图卷积神经网络+拉普拉斯矩阵
图神经网络(Graph Neural Network,GNN)是一类能够从图结构数据中学习特征规律的神经网络,是解决图结构数据(非欧氏空间数据)机器学习问题的最重要的技术之一。
【论文精读】TNNLS 2022 - 基于深度学习的事件抽取研究综述
事件抽取是从海量文本数据中快速获取事件信息的一项重要研究任务。随着深度学习的快速发展,基于深度学习技术的事件抽取已成为研究热点。文献中提出了许多方法、数据集和评估指标,这增加全面更新调研的需求。
原来GNN这么好上手,OMG!用它!
Graph-Learn(GL) 是阿里巴巴开源的高性能工业级大规模图学习系统,本文将对GL的用户接口做一个概览,并介绍GL丰富的图采样算法,以及GL灵活统一的GNNs模型框架,帮助用户快速上手GL。 项目地址:https://github.com/alibaba/graph-learn 。
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
|
11月前
|
GraphScope 的图计算之旅
GraphScope的图计算之旅由阿里巴巴通义实验室系统研发总监徐静波分享,涵盖三个发展阶段。早期方案针对特定任务设计了多个图计算系统;2018年起整合为一站式系统GraphScope,支持图遍历、图分析和图学习;2024年演进至GraphScope Flex,采用模块化设计应对多样化的图计算需求。GraphScope持续优化性能并建设开源社区,现已支持3000多个star和100多种算法,日均处理五万多个图计算任务。未来将探索更多查询语言、存储支持及HTAP能力。
免费试用