算法框架/工具

首页 标签 算法框架/工具
# 算法框架/工具 #
关注
10834内容
|
3月前
| |
Transformer自回归关键技术:掩码注意力原理与PyTorch完整实现
掩码注意力是生成模型的核心,通过上三角掩码限制模型仅关注当前及之前token,确保自回归因果性。相比BERT的双向注意力,它实现单向生成,是GPT等模型逐词预测的关键机制,核心仅需一步`masked_fill_`操作。
|
3月前
| |
来自: 物联网
AI-ANNE: 将神经网络迁移到微控制器的深度探索——论文阅读
AI-ANNE框架探索将深度学习模型迁移至微控制器的可行路径,基于MicroPython在Raspberry Pi Pico上实现神经网络核心组件,支持本地化推理,推动TinyML在边缘设备中的应用。
|
3月前
|
【变分高斯Copula推断】基于Bernstein多项式的非参数转换则在描述单变量边缘后验时提供了充分的灵活性(Matlab代码实现)
【变分高斯Copula推断】基于Bernstein多项式的非参数转换则在描述单变量边缘后验时提供了充分的灵活性(Matlab代码实现)
|
3月前
| |
编码器-解码器架构详解:Transformer如何在PyTorch中工作
本文深入解析Transformer架构,结合论文与PyTorch源码,详解编码器、解码器、位置编码及多头注意力机制的设计原理与实现细节,助你掌握大模型核心基础。建议点赞收藏,干货满满。
解锁RAG高阶密码:自适应、多模态、个性化技术深度剖析
别让你的AI系统还停留在'只会查字典'的阶段!本文用轻松幽默的方式揭秘高级RAG技术如何让AI变得更聪明:自适应检索像读心术一样精准,多模态RAG让AI能'看图识字',个性化RAG则让AI记住你的每一个小习惯。想打造真正智能的AI应用?这三项技能缺一不可!
|
3月前
| |
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
|
3月前
|
《PyTorch 携手 Unity:基于云原生架构化解 AI 游戏系统显存危机》
本文聚焦云原生架构下AI驱动型游戏智能体系统的开发实践,详述遭遇的间歇性显存耗尽危机。该问题如隐匿幽灵,致系统不稳、用户体验骤降。为破局,跨领域精英组建攻坚小组,经日志审计、性能剖析及模拟重现,锁定AI推理临时数据管理不善与引擎资源加载失衡为根源。通过强化数据管理、优化资源策略、完善架构规划等举措,成功化解危机。此次经历揭示了隐性依赖、边界条件测试及跨学科思维的重要性,为同类系统开发提供了宝贵的经验借鉴。
免费试用