YOLOv11改进策略【Neck】| 有效且轻量的动态上采样算子:DySample

简介: YOLOv11改进策略【Neck】| 有效且轻量的动态上采样算子:DySample

一、本文介绍

本文记录的是利用DySample上采样对YOLOv11的颈部网络进行改进的方法研究YOLOv11采用传统的最近邻插值的方法进行上采样可能无法有效地捕捉特征的细节和语义信息,从而影响模型在密集预测任务中的性能。DySample通过动态采样的方式进行上采样,==能够更好地处理特征的细节和语义信息。==


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、DySample介绍

通过学习采样来学习上采样

DySample是一种超轻量且有效的动态上采样器,其设计出发点、原理和优势如下:

2.1、DySample原理

2.1.1 初步设计

通过PyTorch的内置函数,假设输入特征通过双线性插值被插值为连续的特征图,然后通过生成内容感知的采样点来重新采样该连续图。

具体实现为,给定特征图$X$和上采样尺度因子$s$,使用线性层生成偏移$O$,并通过Pixel Shuffling将其重塑为$2 \times sH \times sW$,然后将偏移$O$与原始采样网格$G$相加得到采样集$S$,最后通过网格采样函数根据采样集生成上采样后的特征图$X'$。

2.1.2 改进步骤

  • 初始采样位置:在初步版本中,初始采样位置固定且分布不均匀,类似于“最近邻初始化”。为解决此问题,改为“双线性初始化”,即改变初始位置,使零偏移时能得到双线性插值的特征图,从而提高性能。
    • 偏移范围:由于归一化层的存在,输出特征值的范围通常在$[ - 1, 1]$,导致局部采样位置的偏移范围可能重叠,影响边界预测并导致输出伪影。通过将偏移乘以0.25的“静态范围因子”,局部约束了采样位置的偏移范围,缓解了该问题。
    • 分组:组向上采样,将特征图沿通道维度划分为$g$组,并为每组生成偏移。当$g = 4$时,性能得到提升。
    • 动态范围因子:为增加偏移的灵活性,通过线性投影输入特征生成点级的“动态范围因子”,动态范围因子的值在$[0, 0.5]$范围内,以0.25为中心,进一步提升了性能。
    • 偏移生成方式:研究了两种偏移生成方式,“线性 + 像素洗牌”(LP)和“像素洗牌 + 线性”(PL)。通过实验,根据不同模型设置了不同的组数量,并且发现PL版本在某些模型上表现更好,但在其他模型上略逊于LP版本。

      2.1.3 最终变体

根据范围因子(静态/动态)和偏移生成方式(LP/PL),研究了四个变体:DySample(LP风格,静态范围因子)、DySample +(LP风格,动态范围因子)、DySample - S(PL风格,静态范围因子)、DySample - S +(PL风格,动态范围因子)。

在这里插入图片描述

2.2、优势

  • 轻量高效:与其他动态上采样器相比,DySample不需要高分辨率的引导特征作为输入,也不需要除PyTorch之外的任何额外CUDA包,具有更少的推理延迟、内存占用、FLOPs和参数数量。
  • 性能优越:在五个密集预测任务(语义分割、目标检测、实例分割、全景分割和单目深度估计)中,与其他上采样器相比,DySample报告了更好的性能。

论文:https://arxiv.org/pdf/2308.15085
源码:https://github.com/tiny-smart/dysample

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/143131170

目录
相关文章
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171369 16
|
2天前
|
人工智能 搜索推荐 Docker
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
DeepSeek R1 + LobeChat + Ollama:快速本地部署模型,创建个性化 AI 助手
1593 95
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150306 32
|
9天前
|
Linux iOS开发 MacOS
deepseek部署的详细步骤和方法,基于Ollama获取顶级推理能力!
DeepSeek基于Ollama部署教程,助你免费获取顶级推理能力。首先访问ollama.com下载并安装适用于macOS、Linux或Windows的Ollama版本。运行Ollama后,在官网搜索“deepseek”,选择适合你电脑配置的模型大小(如1.5b、7b等)。通过终端命令(如ollama run deepseek-r1:1.5b)启动模型,等待下载完成即可开始使用。退出模型时输入/bye。详细步骤如下图所示,轻松打造你的最强大脑。
7578 85
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
10天前
|
人工智能 自然语言处理 Java
Spring AI,搭建个人AI助手
本期主要是实操性内容,聊聊AI大模型,并使用Spring AI搭建属于自己的AI助手、知识库。本期所需的演示源码笔者托管在Gitee上(https://gitee.com/catoncloud/spring-ai-demo),读者朋友可自行查阅。
925 41
Spring AI,搭建个人AI助手
|
2月前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201990 15
对话 | ECS如何构筑企业上云的第一道安全防线
|
2天前
|
机器学习/深度学习 人工智能 并行计算
一文了解火爆的DeepSeek R1 | AIGC
DeepSeek R1是由DeepSeek公司推出的一款基于强化学习的开源推理模型,无需依赖监督微调或人工标注数据。它在数学、代码和自然语言推理任务上表现出色,具备低成本、高效率和多语言支持等优势,广泛应用于教育辅导、金融分析等领域。DeepSeek R1通过长链推理、多语言支持和高效部署等功能,显著提升了复杂任务的推理准确性,并且其创新的群体相对策略优化(GRPO)算法进一步提高了训练效率和稳定性。此外,DeepSeek R1的成本低至OpenAI同类产品的3%左右,为用户提供了更高的性价比。
706 10
|
12天前
|
人工智能 JavaScript 前端开发
白嫖 DeepSeek ,低代码竟然会一键作诗?
宜搭低代码平台接入 DeepSeek AI 大模型能力竟然这么方便!本教程将揭秘宜搭如何快速接入 DeepSeek API,3 步打造专属作诗机器人,也许你还能开发出更多有意思的智能玩法,让创意在代码间自由生长。
1551 13
|
10天前
|
Linux iOS开发 MacOS
DeepSeek爆火,如何免费部署到你的电脑上?获取顶级推理能力教程来了
如何在本地电脑上免费部署DeepSeek,获取顶级推理能力?只需三步:1. 访问Ollama官网下载并安装对应操作系统的版本(支持macOS、Linux和Windows)。2. 打开Ollama并确保其正常运行。3. 在Ollama官网搜索并选择DeepSeek模型(如deepseek-r1),根据电脑配置选择合适的模型大小(1.5B至671B)。通过终端命令(如ollama run deepseek-r1:1.5b)运行模型,即可开始使用DeepSeek进行推理。退出模型时,在终端输入/bye。更多详情请参考Ollama官方文档。