计算机视觉

首页 标签 计算机视觉
# 计算机视觉 #
关注
25379内容
|
24天前
|
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
|
24天前
|
FFMPEG学习笔记(一): 提取视频的纯音频及无声视频
本文介绍了如何使用FFmpeg工具从视频中提取纯音频和无声视频。提供了具体的命令行操作,例如使用`ffmpeg -i input.mp4 -vn -c:a libmp3lame output.mp3`来提取音频,以及`ffmpeg -i input.mp4 -c:v copy -an output.mp4`来提取无声视频。此外,还包含了一个Python脚本,用于批量处理视频文件,自动提取音频和生成无声视频。
|
24天前
|
Opencv实用笔记(一): 获取并绘制JSON标注文件目标区域(可单独保存目标小图)
本文介绍了如何使用OpenCV和Python根据JSON标注文件获取并绘制目标区域,同时可将裁剪的图像单独保存。通过示例代码,展示了如何读取图片路径、解析JSON标注、绘制标注框并保存裁剪图像的过程。此外,还提供了相关的博客链接,供读者进一步学习。
|
24天前
|
基于YOLOv8的钢铁缺陷实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的钢铁缺陷实时检测系统,通过1800张图片训练,开发了带GUI界面的检测系统,支持图片、视频和摄像头实时检测,提高生产效率和产品质量。系统基于Python和Pyside6开发,具备模型权重导入、检测置信度调节等功能。项目代码、数据集可通过特定链接获取。
|
24天前
|
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
|
24天前
|
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
本文介绍了如何将ATSS标签分配策略融合到YOLOv8中,以提升目标检测网络的性能。通过修改损失文件、创建ATSS模块文件和调整训练代码,实现了网络的快速涨点。ATSS通过自动选择正负样本,避免了人工设定阈值,提高了模型效率。文章还提供了遇到问题的解决方案,如模块载入和环境配置问题。
|
24天前
|
基于YOLOv8的人员跌倒实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
本文介绍了基于YOLOv8算法的人员跌倒实时检测系统,通过4978张图片训练出有效模型,并开发了带GUI界面的系统,支持图片、视频和摄像头实时检测,具备更换背景、标题,调节检测置信度等功能。
|
24天前
|
基于YOLOv8的工业安全帽实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的工业安全帽实时检测系统,通过7581张图片训练,实现工作场所安全帽佩戴检测,降低工伤事故。系统支持图片、视频和摄像头实时检测,具备GUI界面,易于操作。使用Python和Pyside6开发,提供模型训练、评估和推理功能。
|
24天前
|
基于YOLOv8的河道漂浮物实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的河道漂浮物实时检测系统,利用2400张图片训练有效模型,开发了带GUI界面的系统,支持图片、视频和摄像头检测,具备模型权重导入、检测置信度调节等功能,旨在维护水体生态平衡和环境卫生。
|
24天前
|
基于YOLOv8的交通车辆实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的交通车辆实时检测系统,使用5830张图片训练出有效模型,开发了Python和Pyside6的GUI界面系统,支持图片、视频和摄像头实时检测,具备模型权重导入、检测置信度调节等功能,旨在提升道路安全和改善交通管理。
免费试用