文字识别

首页 标签 文字识别
# 文字识别 #
关注
5646内容
如何绕过Captcha并使用OCR技术抓取数据
在现代网页数据抓取中,Captcha作为一种防止爬虫和恶意访问的措施,广泛应用于各种网站。本文介绍如何使用OCR技术绕过文字Captcha,并通过代理IP技术提高爬虫的隐蔽性。具体实现包括下载Captcha图片、使用Tesseract OCR识别文字、通过代理IP抓取目标数据。示例代码展示了如何抓取大众点评的商家信息。
智源研究院发布千万级多模态指令数据集Infinity-MM:驱动开源模型迈向SOTA性能
近年来,视觉语言模型(VLM)取得了显著进展,然而,现有的开源数据和指令数据集在数量和质量上依然落后,基于开源数据训练的模型在效果上仍然远落后于 SOTA 闭源模型或使用专有数据训练的开源模型。为解决以上问题,进一步提升开源模型的性能,2024年10月25日,智源研究院发布并开源了千万级多模态指令数据集Infinity-MM。
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
|
1月前
|
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
基于文档智能&RAG搭建更懂业务的AI大模型
本文介绍了一种结合文档智能和检索增强生成(RAG)技术,构建强大LLM知识库的方法。通过清洗文档内容、向量化处理和特定Prompt,提供足够的上下文信息,实现对企业级文档的智能问答。文档智能(Document Mind)能够高效解析多种文档格式,确保语义的连贯性和准确性。整个部署过程简单快捷,适合处理复杂的企业文档,提升信息提取和利用效率。
|
1月前
|
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
|
1月前
|
Python中的文字识别利器:pytesseract库
`pytesseract` 是一个基于 Google Tesseract-OCR 引擎的 Python 库,能够从图像中提取文字,支持多种语言,易于使用且兼容性强。本文介绍了 `pytesseract` 的安装、基本功能、高级特性和实际应用场景,帮助读者快速掌握 OCR 技术。
|
1月前
|
利用AI能力平台实现档案馆纸质文件的智能化数字处理
在传统档案馆中,纸质文件管理面临诸多挑战。AI能力平台利用OCR技术,通过图像扫描、预处理、边界检测、文字与图片分离、文字识别及结果存储等步骤,实现高效数字化转型,大幅提升档案处理效率和准确性。
开放应用架构,建设全新可精细化运营的百炼
本文介绍了阿里云智能集团在百炼大模型应用中的技术实践和运营经验。主要内容包括:1) RAG技术的背景及其在落地时面临的挑战;2) 多模态多语言RAG技术的研发与应用;3) 多模态多元embedding和rank模型的训练;4) 基于千问大模型的embedding和rank模型;5) 开源社区推出的GT千问系列模型;6) 模型应用中的可运营实践;7) AI运营的具体方法论和实践经验。通过这些内容,展示了如何解决实际应用中的复杂需求,提升系统的准确性和用户体验。
转发文章
通过文档智能(Document Mind)解析文档支撑检索增强生成RAG 通过文档智能(Document Mind)将文档解析为结构化数据,结合语义理解,提取出文档层级树、样式信息以及版面信息,下游将解析的结果数据处理成文档切片,生成切块(Chunk)数据。 如图所示,文档智能支持将非结构化文档内容提取的信息输出为Markdown和Json格式,更方便构建语义分块策略。 解决问题:文档内容解析错误,相较于传统单页以电子解析文本或者OCR解析文本的方式,IDP则针对不同的文档类型,实现电子解析+OCR/NLP的细粒度混合版融合方案,通过电子解析+OCR/NLP中互相的优缺点弥补,提升解析的
免费试用