Spark 为什么比 Hive 快
Spark与Hive在数据处理上有显著区别。Spark以其内存计算和线程级并行提供更快的速度,但稳定性受内存限制。相比之下,Hive虽较慢,因使用MapReduce,其稳定性更高,对内存需求较小。在Shuffle方式上,Spark的内存 Shuffle 比Hive的磁盘 Shuffle 更高效。综上,Spark在处理速度和Shuffle上占优,Hive则在稳定性和资源管理上更胜一筹。
实时计算 Flink版产品使用合集之idea本地调试,在哪里查看执行结果
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
爬虫技术升级:如何结合DrissionPage和Auth代理插件实现数据采集
本文介绍了在Python中使用DrissionPage库和Auth代理Chrome插件抓取163新闻网站数据的方法。针对许多爬虫框架不支持代理认证的问题,文章提出了通过代码生成包含认证信息的Chrome插件来配置代理。示例代码展示了如何创建插件并利用DrissionPage进行网页自动化,成功访问需要代理的网站并打印页面标题。该方法有效解决了代理认证难题,提高了爬虫的效率和安全性,适用于各种需要代理认证的网页数据采集。
实时计算 Flink版操作报错之往GREENPLUM 6 写数据,用postgresql-42.2.9.jar 报 ON CONFLICT (uuid) DO UPDATE SET 语法有问题。怎么解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
整合LlamaIndex与LangChain构建高级的查询处理系统
该文阐述了如何结合LlamaIndex和LangChain构建一个扩展性和定制性强的代理RAG应用。LlamaIndex擅长智能搜索,LangChain提供跨平台兼容性。代理RAG允许大型语言模型访问多个查询引擎,增强决策能力和多样化回答。文章通过示例代码展示了如何设置LLM、嵌入模型、LlamaIndex索引及查询引擎,并将它们转换为LangChain兼容的工具,实现高效、精准的问题解答。通过多代理协作,系统能处理复杂查询,提高答案质量和相关性。
Go语言与chromedp结合:实现Instagram视频抓取的完整流程
使用Go语言和chromedp库,本文展示了如何抓取Instagram的视频文件,同时通过代理IP保障爬虫稳定和隐私。步骤包括安装chromedp、配置代理(如亿牛云),创建Chrome会话,导航至Instagram,提取视频URL,然后下载视频。关键操作有设置代理服务器、启动Chrome会话、抓取和下载视频。提供的代码示例详细解释了实现过程,有助于开发者学习Instagram数据采集。
Hive实战 —— 电商数据分析(全流程详解 真实数据)
关于基于小型数据的Hive数仓构建实战,目的是通过分析某零售企业的门店数据来进行业务洞察。内容涵盖了数据清洗、数据分析和Hive表的创建。项目需求包括客户画像、消费统计、资源利用率、特征人群定位和数据可视化。数据源包括Customer、Transaction、Store和Review四张表,涉及多个维度的聚合和分析,如按性别、国家统计客户、按时间段计算总收入等。项目执行需先下载数据和配置Zeppelin环境,然后通过Hive进行数据清洗、建表和分析。在建表过程中,涉及ODS、DWD、DWT、DWS和DM五层,每层都有其特定的任务和粒度。最后,通过Hive SQL进行各种业务指标的计算和分析。
MaxCompute产品使用合集之大数据计算MaxCompute是否支持递归
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
大数据组件之Storm简介
【5月更文挑战第2天】Apache Storm是用于实时大数据处理的分布式系统,提供容错和高可用的实时计算。核心概念包括Topology(由Spouts和Bolts构成的DAG)、Spouts(数据源)和Bolts(数据处理器)。Storm通过acker机制确保数据完整性。常见问题包括数据丢失、性能瓶颈和容错理解不足。避免这些问题的方法包括深入学习架构、监控日志、性能调优和编写健壮逻辑。示例展示了实现单词计数的简单Topology。进阶话题涵盖数据延迟、倾斜的处理,以及Trident状态管理和高级实践,强调调试、性能优化和数据安全性。
用 DataV 展示 Prometheus 数据
本文介绍了如何将 Prometheus 数据接入 DataV 进行可视化展示。如果使用的是阿里云可观测监控中的 Prometheus 实例,或者自建的 Prometheus 开放了公网可访问的 HTTP API,那么可直接通过 API 将数据接入 DataV 展示。
官宣|Apache Paimon 毕业成为顶级项目,数据湖步入实时新篇章!
Apache Paimon 在构建实时数据湖与流批处理技术领域取得了重大突破,数据湖步入实时新篇章!
Stable Diffusion 本地部署教程:详细步骤与常见问题解析
【4月更文挑战第12天】本教程详细介绍了如何在本地部署Stable Diffusion模型,包括安装Python 3.8+、CUDA 11.3+、cuDNN、PyTorch和torchvision,克隆仓库,下载预训练模型。配置运行参数后,通过运行`scripts/run_diffusion.py`生成图像。常见问题包括CUDA/CuDNN版本不匹配、显存不足、API密钥问题、模型加载失败和生成质量不佳,可按教程提供的解决办法处理。进阶操作包括使用自定义提示词和批量生成图像。完成这些步骤后,即可开始Stable Diffusion的AI艺术创作。
ClickHouse(06)ClickHouse建表语句DDL详细解析
ClickHouse创建表有多种语法,包括在当前服务器上创建、复制已有表结构、从表函数创建和从查询创建。表引擎决定表的特性和数据存储方式,如Memory引擎仅存储内存中。分布式DDL可在CLUSTER子句中实现跨节点操作。临时表生命周期与会话绑定,仅支持Memory引擎。分区表用于优化查询性能,MergeTree系列引擎支持分区。默认值表达式(DEFAULT, MATERIALIZED, EPHEMERAL, ALIAS)影响数据插入和查询行为。主键和约束可增强数据完整性,TTL功能用于自动删除过期数据。列压缩和编码能减少存储空间。文章还提供了ClickHouse更多相关系列内容链接。
基于 NVIDIA Megatron-Core 的 MoE LLM 实现和训练优化
本文将分享阿里云人工智能平台 PAI 团队与 NVIDIA Megatron-Core 团队在 MoE (Mixture of Experts) 大型语言模型(LLM)实现与训练优化上的创新工作。
实时数仓 Hologres产品使用合集之报错:ORCA failed to produce a plan : PlStmt Translation: Group by key is type of imprecise not supported如何解决
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
常用大数据组件的Web端口号总结
这是关于常用大数据组件Web端口号的总结。通过虚拟机名+端口号可访问各组件服务:Hadoop HDFS的9870,YARN的ResourceManager的8088和JobHistoryServer的19888,Zeppelin的8000,HBase的10610,Hive的10002。ZooKeeper的端口包括客户端连接的2181,服务器间通信的2888以及选举通信的3888。
Flink SQL 问题之用代码执行报错如何解决
Flink SQL报错通常指在使用Apache Flink的SQL接口执行数据处理任务时遇到的问题;本合集将收集常见的Flink SQL报错情况及其解决方法,帮助用户迅速恢复数据处理流程。
使用 Paimon + StarRocks 极速批流一体湖仓分析
本文整理自阿里云智能高级开发工程师王日宇,在 Flink Forward Asia 2023 流式湖仓(二)专场的分享。
【AAAI 2024】MuLTI:高效视频与语言理解
多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
AI+组合优化 |机器学习顶会ICLR/ICML/NeurIPS'23最新进展-MIP求解篇(附原文源码)
本文梳理了ICLR 2023、ICML 2023、NeurIPS 2023有关机器学习+混合整数规划问题求解加速求解加速的研究成果,总共包含8篇文章。
使用Accelerate库在多GPU上进行LLM推理
大型语言模型(llm)已经彻底改变了自然语言处理领域。随着这些模型在规模和复杂性上的增长,推理的计算需求也显著增加。为了应对这一挑战利用多个gpu变得至关重要。
【论文解读】单目3D目标检测 MonoFlex(CVPR 2021)
本文分享单目3D目标检测,MonoFlex 模型的论文解读,了解它的设计思路,论文核心观点,模型结构,以及效果和性能。
【论文解读】MV3D-Net 用于自动驾驶的多视图3D目标检测网络
MV3D-Net融合了视觉图像和激光雷达点云信息;它只用了点云的俯视图和前视图,这样既能减少计算量,又保留了主要的特征信息。随后生成3D候选区域,把特征和候选区域融合后输出最终的目标检测框。 论文地址:Multi-View 3D Object Detection Network for Autonomous Driving 开源代码:GitHub - bostondiditeam/MV3D: Multi-View 3D Object Detection Network for Autonomous Driving
Win11 系统登录用户时无法登录
Win11系统,在未绑定和注册微软账号的情况下,使用邮箱注册绑定了微软账号,在win+L锁定屏幕后出现无法登录账号的情况,登录按钮只现实两个字,密码输入框不显示,点击登录后无反应或者加载几圈后回到登录原始页面。
阿里云E-MapReduce节点优雅下线-基于Yarn Node Labels特性
背景:阿里云E-MapReduce集群(简称EMR集群)部分节点需要下线迁移,但集群资源常年跑满,诉求是节点下线迁移过程中不影响任一任务执行。 本次方案基于Yarn Node Labels的特性进行资源隔离后下线。 下期对官网Graceful Decommission of YARN Nodes的方案进行验证,参考:https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/GracefulDecommission.html。
FlashAttention算法详解
这篇文章的目的是详细的解释Flash Attention,为什么要解释FlashAttention呢?因为FlashAttention 是一种重新排序注意力计算的算法,它无需任何近似即可加速注意力计算并减少内存占用。所以作为目前LLM的模型加速它是一个非常好的解决方案,本文介绍经典的V1版本,最新的V2做了其他优化我们这里暂时不介绍。因为V1版的FlashAttention号称可以提速5-10倍,所以我们来研究一下它到底是怎么实现的。
EasyRec在公开数据集上的benchmark测试
在pai平台上可公开读取的数据集,不用再费劲去下载和处理数据集: Taobao 数据集介绍 Avazu CTR 数据集 AliCCP 数据集 CENSUS 数据集
机器学习系列 | 01:多类别分类任务(multi-class)中为何precision,recall和F1相等?
在 multi-class 分类任务中,如果使用 micro 类指标,那么 micro-precision, micro-recall和micro-F1值都是相等的。本文主要针对这个现象进行解释。
免费公测|阿里云EMR Serverless StarRocks 公测正式开启!
阿里云EMR Serverless StarRocks 免费公测已开启,向所有用户开放!您可通过EMR控制台直接创建实例,轻松体验全托管、免运维的服务。
推荐系统[四]:精排-详解排序算法LTR (Learning to Rank)_ poitwise, pairwise, listwise相关评价指标,超详细知识指南。
推荐系统[四]:精排-详解排序算法LTR (Learning to Rank)_ poitwise, pairwise, listwise相关评价指标,超详细知识指南。
阿里妈妈Dolphin智能计算引擎基于Flink+Hologres实践
本文将会介绍阿里妈妈Dolphin智能计算引擎基于Flink+Hologres实践。
最高增强至1440p,阿里云发布端侧实时超分工具,低成本实现高画质
近日,阿里云机器学习PAI团队发布一键端侧超分工具,可实现在设备和网络带宽不变的情况下,将移动端视频分辨率提升1倍,最高可增强至1440p,将大幅提升终端用户的观看体验,该技术目前已在优酷、夸克、UC浏览器等多个APP中广泛应用。
阿里云EMR Remote Shuffle Service在小米的实践,以及开源
阿里云EMR自2020年推出Remote Shuffle Service(RSS)以来,帮助了诸多客户解决Spark作业的性能、稳定性问题,并使得存算分离架构得以实施,与此同时RSS也在跟合作方小米的共建下不断演进。本文将介绍RSS的最新架构,在小米的实践,以及开源。
DataWorks百问百答68:如何阅读数据集成日志(日志分析及常见报错情况)?
数据集成日志分析及常见报错情况(rds至odps版)
多数据源一站式入湖
通过一站式入湖,将不同数据源的数据统一归并到以OSS对象存储为基础架构的集中式数据湖存储中,解决了企业面临的数据孤岛问题,为统一的数据分析打好了基础.
数据湖元数据服务的实现和挑战
数据湖元数据服务为大数据而生,为互通生态而生,期望后续继续完善其服务能力和支撑更多的大数据引擎,通过开放的服务能力、存储能力、统一的权限及元数据管理能力,为客户节省管理/人力/存储等各项成本,实现客户自己的业务价值。
【最佳实践】使用 Elasticsearch SQL 实现数据查询
如何使用 Elasticsearch SQL 来对我们的数据进行查询。
【最佳实践】ingest对异源数据结构化处理,并由Elastic Stack实现可观测性分析
本文将讲述如何运用Elasticsearch的 ingest 节点实现数据结构化,并对数据进行处理。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。