常用的相似度度量总结:余弦相似度,点积,L1,L2
相似性度量在机器学习中起着至关重要的作用。这些度量以数学方式量化对象、数据点或向量之间的相似性。理解向量空间中的相似性概念并采用适当的度量是解决广泛的现实世界问题的基础。本文将介绍几种常用的用来计算两个向量在嵌入空间中的接近程度的相似性度量。
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
什么是HTTP代理?HTTP代理的作用?HTTP代理怎么设置?
HTTP代理是一种充当客户端和服务器之间的中间人的服务器。当客户端发起请求时,HTTP代理会拦截请求并将其转发给目标服务器。一旦目标服务器响应,HTTP代理会拦截响应并将其转发回客户端。HTTP代理可以被用于多种场景,例如加强安全、缓存内容以加速访问、访问受限资源等等。在这篇文章中,我们将会讨论HTTP代理的作用、类型以及如何设置它。
免费公测|阿里云EMR Serverless StarRocks 公测正式开启!
阿里云EMR Serverless StarRocks 免费公测已开启,向所有用户开放!您可通过EMR控制台直接创建实例,轻松体验全托管、免运维的服务。
【实践案例】Databricks 数据洞察在美的暖通与楼宇的应用实践
获取更详细的 Databricks 数据洞察相关信息,可至产品详情页查看:https://www.aliyun.com/product/bigdata/spark
超详攻略!Databricks 数据洞察 - 企业级全托管 Spark 大数据分析平台及案例分析
5分钟读懂 Databricks 数据洞察 ~ 更多详细信息可登录 Databricks 数据洞察 产品链接:https://www.aliyun.com/product/bigdata/spark(当前产品提供¥599首购试用活动,欢迎试用!)
Dynamic mapping — Elastic Stack 实战手册
Elasticsearch 本着让用户使用更方便快捷的原则,针对这个问题做了很多工作,使定义数据的方式更加抽象灵活,多个雷同的字段可使用 1 个配置完成。
PyFlink Table API - Python 自定义函数
Python 自定义函数是 PyFlink Table API 中最重要的功能之一,其允许用户在 PyFlink Table API 中使用 Python 语言开发的自定义函数,极大地拓宽了 Python Table API 的使用范围。
淘宝千人千面背后的秘密:搜索推荐广告三位一体的在线服务体系AI·OS
揭晓三位一体的在线服务体系AI·OS,及其技术架构演进,技术概况,云原生产品与实践。
揭秘工业级大规模GNN图采样
互联网下的图数据纷繁复杂且规模庞大,如何将GNN应用于如此复杂的数据上呢?答案是图采样。结合阿里巴巴开源的GNN框架Graph-Learn(https://github.com/alibaba/graph-learn),本文重点介绍GNN训练过程中的各种图采样和负采样技术。
Flink kafka source & sink 源码解析
本文基于 Flink 1.9.0 和 Kafka 2.3 版本,对 Flink Kafka source 和 sink 端的源码进行解析,主要分为 Flink-kafka-source 源码解析、Flink-kafka-sink 源码解析两部分。
如何在 PyFlink 1.10 中自定义 Python UDF?
本篇从架构到 UDF 接口定义,再到具体的实例,向大家介绍了在 Apache Flink 1.10 发布之后,如何利用 PyFlink 进行业务开发。
重磅首发 |《Elasticsearch 中国开发者调查报告》探索开发者的现状和未来
为了了解Elasticsearch 中国开发者群体,结合1186位开发者的调研数据和18位社区专家的深度访谈,Elastic 技术社区、阿里巴巴 Elasticsearch 技术团队和阿里云开发者社区联合发布了《Elasticsearch 中国开发者调查报告》。免费下载,抢先一步读懂这个“族群”吧。
阿里封神-大数据处理技术漫谈
以前一篇博客,从宏观描述了云梯1当时整体生态,年底了,笔者再梳理下软件栈,主要以开源软件为主,闭源不谈。大数据发展至今,开源软件层出不穷,也去解决了不同的问题,笔者试图去弄清楚这些,分门别类,后面也可以参照下。由于笔者知识面有限,难免会出现一些偏颇,不全,不正确,还请指正。后面也会有很多新的软件出现
AI Agent 职业路线全解析:从入门到精通的体系化进阶指南
随着“人工智能+”深入推进,AI智能体正从辅助工具升级为协作伙伴。2027年应用率将超70%,催生生成式AI测试员、智能体设计师等新岗。我国AI人才缺口超500万,人社部、教育部已将其纳入国家职业与教育体系。本文梳理四阶进阶路径(零代码构建→流程集成→全栈开发→行业落地),助力开发者构建“人机协同”核心竞争力。(239字)
微调与安全隐私:为什么微调会放大风险
微调不是“温和调教”,而是将敏感信息固化进模型参数的风险交换过程。它会放大偶然数据中的隐私隐患,导致过拟合式泄露、隐式模式记忆与不可撤回的记忆固化。安全边界模糊,内部使用反而更易触发风险。真正可控的路径:先RAG,再小步微调,始终以风险而非效果为决策核心。
阿里云 OpenLake:AI 时代的全模态、多引擎、一体化解决方案深度解析
阿里云徐晟详解OpenLake:构建全模态、多引擎、一体化智能数据体系,融合大数据与AI,支持湖仓一体、Agentic Data及AI搜索,助力企业降本增效、加速AI落地。(239字)
十一年实战沉淀:淘宝商品评论数据深度解析与落地技巧
深耕淘宝评论分析11年,亲历数据结构迭代与解析挑战。本文详解评论数据核心字段、解析难点及破局技巧,分享实战验证的标准化流程,涵盖字符处理、动态规则、高效存储等关键环节,助力精准情感分析与用户洞察。
1688店铺公司档案信息API接口开发全指南
本文系统讲解1688店铺公司档案信息API开发,涵盖接口认知、接入准备、调用实战、数据解析与合规风控五方面,助力企业高效获取供应商资质、产能、信用等核心数据,提升供应链数字化水平。通过第三方合规接口,实现ERP系统对接、供应商分级与风险预警,推动采购智能化升级。(239字)
真实案例复盘:从“三套烟囱”到 All in ES,这家企业如何砍掉 40%运维成本
某泛娱乐平台面临搜索架构复杂、成本高企难题,通过阿里云Elasticsearch实现日志、搜索、向量一体化重构。借助Serverless化与混合存储,成本降60%,运维统一,查询效率倍增,验证了“All in ES”极简架构在AI时代的高效与可扩展性。
信任是否可以被量化?系统如何“评估”一个主体
信任能否被量化?系统不评判态度或人格,而是通过持续记录行为轨迹,评估主体的稳定性、一致性和成长趋势。量化核心并非“你是谁”,而是“你如何变化”——系统关注可预测的行为模式与修复能力,偏好缓慢而稳定的价值输出。信任正从静态标签变为动态状态变量,其关键维度是“信任斜率”:变化的速度与方向,比当前位置更重要。
闲鱼商品详情API接口文档
本接口用于获取闲鱼商品详情,包括标题、价格、库存、卖家信息、图片链接、交易记录等核心数据,返回JSON格式,适用于商品监控、竞品分析等合规场景。需通过模拟请求或授权方式调用,注意反爬机制。
异步消息组件MQ基础
本课程介绍RabbitMQ在微服务中的应用,涵盖MQ的应用场景、异步调用与同步调用的区别、RabbitMQ的安装与配置、消息收发入门程序、工作队列、发布订阅模型及多种交换机(fanout、Direct、Topic)特性,同时讲解惰性队列、优先级队列、消息堆积处理及商城项目中的实际应用,帮助学员掌握消息中间件的核心技术与实践能力。
十、HQL:排序、联合与 CTE 高级查询
Hive 查询不仅能查,还能查得漂亮、高效。我们这次聚焦 HQL 中的高级技巧——从 ORDER BY 到 SORT BY、DISTRIBUTE BY 与 CLUSTER BY,带你理解排序在分布式环境中的执行逻辑;再深入讲解 UNION 与 CTE 等查询组织方式,帮你将复杂 SQL 拆解得更清晰。我还特意写了丰富示例与实战练习,适合正在提升 Hive 查询能力的你阅读、收藏和练习。
Forrester发布流式数据平台报告:Flink 创始团队跻身领导者行列,实时AI能力获权威认可
Ververica,由Apache Flink创始团队创立、阿里云旗下企业,首次入选Forrester 2025流式数据平台领导者象限,凭借在实时AI与流处理领域的技术创新及全场景部署能力获高度认可,成为全球企业构建实时数据基础设施的核心选择。
GEO 优化必备:RAG 技术全解析(基于知识密集型 NLP 经典论文)
2020 年论文提出的 RAG(检索增强生成),专治大模型 “幻觉、知识过时” 等落地痛点。它将 “检索外部知识” 与 “生成回答” 深度绑定,先精准抓取相关知识片段,再让模型基于证据生成内容。通过端到端联合训练,检索与生成协同优化,事实准确率显著提升,幻觉率大降。无需重训模型即可更新知识,还能追溯答案来源。如今成企业客服、医疗法律等领域刚需,推动大模型从 “通用” 走向 “可信实用”。这让我们做GEO优化就有了基础理论和方法。
想让豆包在答案里提到你的官网?这三个步骤缺一不可
想让豆包引用你的官网?必须做好三步:一是将内容模块化、结构清晰,便于AI理解;二是通过专业资质、数据出处和结构化标记提升权威性;三是持续监测引用效果,优化内容策略。AI搜索时代,被“看见”才能赢得客户。
EMR AI助手开启公测:用AI重塑大数据运维,更简单、更智能
EMR AI 助手开启公测,通过合理利用 EMR AI 助手的各项功能,可以快速查询资源信息、唤起相关操作、诊断组件异常、获取技术支持等,能帮您提升运维效率和操作体验。
20个低代码开发平台多维度对比:解锁企业应用开发新动能
Gartner 报告指出,到 2024 年,低代码应用开发将占应用开发总数的 65%以上,将有 3/4 的大型企业会使用至少 4 个低代码平台进行 IT 应用开发。同时,市场研究机构的数据显示,在传统开发模式下,超过 70% 的企业项目存在开发周期延长的问题,平均延长时间达到原计划的 30%;约 80% 的企业表示在招募专业开发人才时面临困难;而面对个性化需求,近 90% 的企业认为传统开发响应速度慢,无法及时满足业务变化需求。这些数据充分表明,当前企业在应用开发上面临问题具有普遍性和严重性,低代码开发平台的兴起势在必行 ,其有望成为解决这些难题、推动企业数字化转型的关键力量。
氛围编程陷阱:为什么AI生成代码正在制造大量"伪开发者"
AI兴起催生“氛围编程”——用自然语言生成代码,看似高效实则陷阱。它让人跳过编程基本功,沦为只会提示、不懂原理的“中间商”。真实案例显示,此类项目易崩溃、难维护,安全漏洞频出。AI是技能倍增器,非替代品;真正强大的开发者,永远是那些基础扎实、能独立解决问题的人。
Kubeflow-Trainer-架构学习指南
本指南系统解析Kubeflow Trainer架构,涵盖核心设计、目录结构与代码逻辑,结合学习路径与实战建议,助你掌握这一Kubernetes原生机器学习训练平台的原理与应用。
PINN训练新思路:把初始条件和边界约束嵌入网络架构,解决多目标优化难题
PINNs训练难因多目标优化易失衡。通过设计硬约束网络架构,将初始与边界条件内嵌于模型输出,可自动满足约束,仅需优化方程残差,简化训练过程,提升稳定性与精度,适用于气候、生物医学等高要求仿真场景。
从零构建能自我优化的AI Agent:Reflection和Reflexion机制对比详解与实现
AI能否从错误中学习?Reflection与Reflexion Agent通过生成-反思-改进循环,实现自我优化。前者侧重内容精炼,后者结合外部研究提升准确性,二者分别适用于创意优化与知识密集型任务。
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
解决提示词痛点:用AI智能体自动检测矛盾、优化格式的完整方案
本文介绍了一种基于用户意图的提示词优化系统,利用多智能体架构实现自动化优化,提升少样本学习场景下的提示词质量与模型匹配度。系统通过专用智能体协同工作,识别并修复逻辑矛盾、格式不清及示例不一致等问题,结合Pydantic结构化数据模型与OpenAI评估框架,实现高效、可扩展的提示词优化流程。该方案显著减少了人工干预,增强了系统效率与输出一致性,适用于复杂研究任务与深度AI应用。
免费玩转阿里云DataWorks!智能Copilot+用户画像实战,开发效率翻倍攻略
DataWorks是阿里云推出的一站式大数据开发与治理平台,具备数据集成、开发、管理、安全及智能监控等功能,支持多行业数据中台建设。其可视化界面与强大调度能力,助力企业高效完成数据处理与分析。
大数据之路:阿里巴巴大数据实践——日志采集与数据同步
本资料全面介绍大数据处理技术架构,涵盖数据采集、同步、计算与服务全流程。内容包括Web/App端日志采集方案、数据同步工具DataX与TimeTunnel、离线与实时数仓架构、OneData方法论及元数据管理等核心内容,适用于构建企业级数据平台体系。
DataWorks 千万级任务调度与全链路集成开发治理赋能智能驾驶技术突破
智能驾驶数据预处理面临数据孤岛、任务爆炸与开发运维一体化三大挑战。DataWorks提供一站式的解决方案,支持千万级任务调度、多源数据集成及全链路数据开发,助力智能驾驶模型数据处理与模型训练高效落地。
运营商三要素API的实战指南:实现 “人 - 证 - 号” 三位一体核验
在数字身份欺诈频发的背景下,传统单点验证已无法满足高安全需求。探数API推出的“运营商三要素核验API”,通过姓名、身份证号、手机号的三重交叉验证,构建起“铁三角”防线,广泛适用于金融、政务、电商等领域。该API支持一致性验证及基础信息返回(可选),具备高准确性与防伪性,远超单一或双因素验证方式。其调用流程简单,提供Python示例代码及异常处理建议,助力打造更安全的数字身份体系,成为连接多领域的关键桥梁。未来,多因子融合的身份认证将成为趋势,而三要素核验API正是当前可信数字身份的重要基石。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。