实时计算 Flink版操作报错合集之报错:“Data row is smaller than a column index”如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
探索文本向量化的新高峰:合合信息acge_text_embedding 模型原创
文本向量化方法包括词袋模型、TF-IDF、词嵌入和预训练模型(如BERT、GPT)。词嵌入如Word2Vec、GloVe和FastText捕捉单词语义,预训练模型则保留上下文信息。C-MTEB是中文文本嵌入评估平台,测试模型在检索、相似性、分类等任务的性能。合合信息的acge_text_embedding模型在C-MTEB中表现优秀,适用于情感分析、文本生成等任务,具有高分类聚类准确性、资源效率和场景适应性。技术突破涉及数据集优化、模型训练策略和持续学习,提供Demo展示如何使用acge模型计算句子相似度。acge_text_embedding是提升文本处理效率和智能化的有力工具。
【AAAI2024】M2SD:通过特征空间预构建策略重塑小样本类增量学习
小样本类增量学习代表了机器学习领域中一个高度挑战性的议题,其核心目标在于能够在仅有限的数据支持下识别新类别,同时保留对已学习类别的认知,而无须重新训练整个模型。这一目标在模型需适应新类别的同时使用有限训练数据的情况下尤为艰巨。针对上述挑战,我们提出了一种创新性策略,称为多重混合自蒸馏。旨在为类增量学习阶段准备一个具有高度可扩展性和包容性的特征空间。
DataWorks常见问题之按tab键没反应如何解决
DataWorks是阿里云提供的一站式大数据开发与管理平台,支持数据集成、数据开发、数据治理等功能;在本汇总中,我们梳理了DataWorks产品在使用过程中经常遇到的问题及解答,以助用户在数据处理和分析工作中提高效率,降低难度。
【多传感器融合】BEVFusion: 激光雷达和摄像头融合框架 NeurIPS 2022
BEVFusion提出一个融合多摄像头和激光雷达数据的框架,可用于3D检测。在自动驾驶领域,通过独立处理并融合摄像头和激光雷达数据,可以显著提升3D对象检测的准确性和稳健性,尤其是在激光雷达可能出现故障的真实场景中。
多GPU训练大型模型:资源分配与优化技巧 | 英伟达将推出面向中国的改良芯片HGX H20、L20 PCIe、L2 PCIe
在人工智能领域,大型模型因其强大的预测能力和泛化性能而备受瞩目。然而,随着模型规模的不断扩大,计算资源和训练时间成为制约其发展的重大挑战。特别是在英伟达禁令之后,中国AI计算行业面临前所未有的困境。为了解决这个问题,英伟达将针对中国市场推出新的AI芯片,以应对美国出口限制。本文将探讨如何在多个GPU上训练大型模型,并分析英伟达禁令对中国AI计算行业的影响。
大语言模型量化方法对比:GPTQ、GGUF、AWQ
在过去的一年里,大型语言模型(llm)有了飞速的发展,在本文中,我们将探讨几种(量化)的方式,除此以外,还会介绍分片及不同的保存和压缩策略。
YOLO实践应用之搭建开发环境(Windows系统、Python 3.8、TensorFlow2.3版本)
基于YOLO进行物体检测、对象识别,先和大家分享如何搭建开发环境,会分为CPU版本、GPU版本的两种开发环境,本文会分别详细地介绍搭建环境的过程。主要使用TensorFlow2.3、opencv-python4.4.0、Pillow、matplotlib 等依赖库。
【2023云栖】刘一鸣:Data+AI时代大数据平台建设的思考与发布
本文根据2023云栖大会演讲实录整理而成,演讲信息如下: 演讲人:刘一鸣 | 阿里云自研大数据产品负责人 演讲主题:Data+AI时代大数据平台应该如何建设
在 Visual Studio Code 中使用 CodeFuse
Visual Studio Code作为一款广受程序员欢迎的代码编辑器,在前端开发和各类脚本语言开发中占据主流地位,CodeFuse智能研发助手就专门为VS Code研发了插件,只要安装插件就可以使用CodeFuse提供的各种功能,下面我们看看如何在VS Code中使用CodeFuse插件呢?
阿里云PAI-灵骏大模型训练工具Pai-Megatron-Patch正式开源!
随着深度学习大语言模型的不断发展,其模型结构和量级在快速演化,依托大模型技术的应用更是层出不穷。对于广大开发者来说不仅要考虑如何在复杂多变的场景下有效的将大模型消耗的算力发挥出来,还要应对大模型的持续迭代。开发简单易用的大模型训练工具就成了应对以上问题广受关注的技术方向,让开发者专注于大模型解决方案的开发,降低大模型训练加速性能优化和训练/推理全流程搭建的人力开发成本。阿里云机器学习平台PAI开源了业内较早投入业务应用的大模型训练工具Pai-Megatron-Patch,本文将详解Pai-Megatron-Patch的设计原理和应用。
五种重要的 AI 编程语言
编码是任何构建 AI 产品的人必备技能。它使您能够将机器学习想法变为现实。学习编码既有趣又充满力量,但也需要时间和精力。你想做的最后一件事就是开始学习一门语言,只是在几周或几个月后才意识到你想要的工作实际上需要一门不同的语言。
大数据技术解析:Hadoop、Spark、Flink和数据湖的对比
Hadoop、Spark、Flink 和数据湖都在大数据处理领域有着重要的地位,但它们各自的优势和劣势也需考虑实际应用场景。Hadoop 适用于批处理任务,Spark 更适合实时分析,而 Flink 则强调低延迟的流式处理。数据湖则是存储和管理大规模多样性数据的选择。
从零开始构建自己的AI:一个初学者的机器学习教程
通过这个简单的机器学习教程,我们初步了解了从数据收集、选择模型到训练和预测的基本流程。机器学习是一个广阔的领域,有很多知识和技能需要深入学习。希望本教程能为初学者提供一个入门的指引,引导大家探索更多有关机器学习的知识。感谢您阅读本文,如果您有任何问题或想法,请在评论区与我分享!让我们一起踏上机器学习的旅程,构建属于自己的AI。
深入解读 Flink 1.17
阿里云技术专家,Apache Flink PMC Member & Committer、Flink CDC Maintainer 徐榜江(雪尽) 在深入解读 Flink 1.17 的分享。
IM开发者的零基础通信技术入门(十二):上网卡顿?网络掉线?一文即懂!
本文将详细介绍生活中遇到的常见网络问题,及可能的解决方法,虽说是一篇技术文章,但内容将一如既往地通俗易懂,简单实用。
Flink CEP 新特性进展与在实时风控场景的落地
本次分享将会介绍 Flink 社区在 1.16 中对 Flink CEP 所做的增强与优化。
阿里云机器学习平台 PAI宣布集成国产深度学习框架 OneFlow
在云栖大会上,阿里云机器学习PAI平台宣布集成自研深度学习框架OneFlow,进一步提升对国产算法框架的支持。PAI可以在架构上实现包括对国际主流、国内自研在内的任何第三方深度学习框架的支持。
阿里云ES全观测引擎TimeStream时序增强功能重磅发布,助力时序场景实现最佳实践
阿里云ES全观测引擎TimeStream时序增强功能最新发布,在云原生ELK全托管基础上,通过TimeStream时序增强功能插件,可实现高性能、低成本时序数据存储和查询分析。本文介绍TimeStream适用场景、功能优势、性能测试结果和实践案例
电商搜索能力解读--实体识别(NER)
搜索是电商行业业务转化中最重要的功能,那你了解其中的技术实现原理吗?一起来了解基于多年淘系全量数据和知识库深入优化的电商行业实体识别的能力吧,在查询分析和类目预测中能带来哪些优化效果那~
深入分析 Flink SQL 工作机制
本文首先会介绍推动这些优化背后的思考,展示统一的架构如何更好地处理流式和批式查询,其次将深入剖析 Flink SQL 的编译及优化过程。
欢迎加入DataWorks产品钉钉交流群
欢迎加入DataWorks产品钉钉交流群,该群每日有值班针对dataworks问题进行讲解
hive在E-MapReduce集群的实践(一)hive异常排查入门
hive是hadoop集群最常用的数据分析工具,只要运行sql就可以分析海量数据。初学者在使用hive时,经常会遇到各种问题,不知道该怎么解决。 本文是hive实践系列的第一篇,以E-MapReduce集群环境为例,介绍常见的hive执行异常,定位和解决方法,以及hive日志查看方法。
【X-Pack解读】阿里云Elasticsearch X-Pack 监控组件功能详解
阿里云Elasticsearch集成了Elastic Stack商业版的X-Pack组件包,包括安全、告警、监控、报表生成、图分析、机器学习等组件,用户可以开箱即用。本文将对X-Pack 的监控组件功能进行详细解读。
智能体来了:领航员集结,共赴智创未来新纪元
本文探讨智能体时代“快”背后的深层挑战,指出技术加速更需“领航员”——兼具技术理解、业务洞察与价值判断的复合型治理者。他们不追风头,专注把关方向、校准目标、坚守责任,以理性与制度为智能发展护航。(239字)
大模型微调参数设置:你调的不是效果,是不确定性
本文揭示大模型微调中参数的本质:它们并非提升性能的“旋钮”,而是分配不确定性的“阀门”。learning rate 决定行为漂移半径,batch size 影响共识强度,epoch 加速偏差固化,正则项约束激进程度。参数间存在风险耦合,调参实为风险管理——目标不是最优指标,而是可控的系统行为。
让你的AI更“懂你”:零代码实践指令微调
指令微调是让大模型“听懂人话、精准执行”的关键技术——它不追求模型更聪明,而致力于更贴心、更可靠。本文用生活化类比讲清Flan-T5、InstructGPT、Self-Instruct三大流派原理,手把手带零代码新手完成数据准备、模型选择、训练测试全流程,并提供避坑指南与效果评估方法。(239字)
淘宝商品详情API(tb.item_get)
本文详解淘宝开放平台商品详情核心API(如item_get),涵盖对接流程、权限申请、请求规范、参数说明及返回字段,并列举代购集运、选品分析、比价导购等典型应用场景,助力开发者合规高效获取商品数据。(239字)
企业硬盘加密软件选型指南:DiskCrypt与BitLocker功能、性能与应用场景全对比
本文对比国产安得卫士DiskCrypt与微软BitLocker两款硬盘加密软件,在加密深度(扇区级vs分区级)、认证机制、密钥管理、应急恢复、国产化兼容及集中管控等维度展开分析,助力用户按安全等级、合规要求与使用场景科学选型。(239字)
数据语义层 vs 宽表模式:哪种架构更适合 AI 时代的数据分析?
用户零等待指标交付,逻辑变更分钟级生效,无需 ETL;100%一致口径,所有人与 AI 通过同一语义层访问数据;无缝对接 AI,语义层为 AI 提供标准化查询 API。
漫画说:为什么你的“增量计算”越跑越慢? ——90%的实时数仓团队都踩过的坑,藏在这几格漫画里
面对海量数据,传统全量计算导致实时更新效率低下。阿里云 Hologres 通过有状态增量计算,仅处理变更数据并持久化中间状态,实现秒级刷新、降本增效,真正让“增量”摆脱重复扫描历史的困局。
给大模型“开小灶”:零代码实战专属领域微调,手把手教你打造AI专家
本文介绍如何通过“模型微调”将通用大模型打造成特定领域的专家助手,聚焦Web安全场景,借助LLaMA Factory实现零代码、可视化微调。涵盖微调原理(如LoRA、量化)、全流程操作及效果评估,帮助用户低成本构建专属高性能AI模型。
京东API:通过商品ID获取京东商品详情数据指南
京东商品详情API(JD.item_get)支持通过商品ID获取标题、价格、库存、品牌、分类、销量等核心信息,广泛用于电商分析、比价工具与监控系统。需传入app_key、item_id、timestamp等参数并生成签名,返回JSON格式数据,助力高效对接京东商品数据。
Linux 学习资源精选:从入门到运维的高效清单
本文精选Linux学习资源,按入门、运维、进阶三阶段系统推荐视频、书籍、工具与项目,强调分阶段精准匹配、重实操强总结,助力学习者高效构建知识体系,少走弯路,快速提升实战能力。
大模型基础概念术语解释
大语言模型(LLM)基于Transformer架构,通过海量文本训练,实现强大语言理解与生成。其核心包括注意力机制、位置编码、嵌入层等,支持万亿级参数与涌现能力,能完成翻译、问答等多任务,展现卓越泛化与推理能力。
当下数字人定制平台哪家好?实测后我推荐它
2025年数字人已成商业基础设施,市场规模突破480亿。本文亲测来灵数字人、腾讯智影、百度曦灵、小冰、Synthesia五大平台,从客服、直播、内容生产三大场景出发,揭示选型关键:不看功能多全,而看是否适配业务。真正赢家,是选对场景、匹配流程、坚持12个月以上投入的企业。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。