实时交互数字人端到端延迟压至0.8秒:关键技术节点与商业价值解析
0.8秒是实时数字人体验的关键阈值,端到端延迟低于此值可实现自然流畅交互。本文解析其技术链路、核心支撑与商业价值,揭示为何这一指标成为数字人从“可用”到“好用”的分水岭。
向量存储vs知识图谱:LLM记忆系统技术选型
本文探讨LLM长期记忆系统的构建难点与解决方案,对比向量检索与知识图谱架构优劣,分析Zep、Mem0、Letta等开源框架,并提供成本优化策略,助力开发者实现高效、可扩展的AI记忆系统。
Stable Video Diffusion:将潜在视频扩散模型扩展到大规模数据集——论文阅读
Stable Video Diffusion(SVD)是Stability AI提出的高分辨率视频生成模型,基于潜在扩散框架,通过三阶段训练与严格数据筛选,在文本到视频和图像到视频任务中实现高质量生成。论文系统研究了数据质量对模型性能的影响,提出级联切分检测、运动评分过滤、合成字幕优化等策略,并引入线性递增引导等创新技术,显著提升生成稳定性与视觉保真度。
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
推理型大语言模型兴起,通过先思考再作答提升性能。本文介绍GRPO等强化学习算法,详解其原理并动手用Qwen2.5-3B训练推理模型,展示训练前后效果对比,揭示思维链生成的实现路径。
【清爽加速】Windows 11 Pro 24H2-Emmy精简系统
“清爽加速”Windows 11 Pro 24H2 针对老旧或低配设备,通过精简系统、优化服务与简化装机流程,降低资源占用,提升运行流畅度,兼顾安全性与稳定性,让老设备也能轻松应对日常办公与轻度娱乐需求。
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
Java 大视界 -- Java 大数据机器学习模型在舆情分析中的情感倾向判断与话题追踪(185)
本篇文章深入探讨了Java大数据与机器学习在舆情分析中的应用,重点介绍了情感倾向判断与话题追踪的技术实现。通过实际案例,展示了如何利用Java生态工具如Hadoop、Hive、Weka和Deeplearning4j进行舆情数据处理、情感分类与趋势预测,揭示了其在企业品牌管理与政府决策中的重要价值。文章还展望了多模态融合、实时性提升及个性化服务等未来发展方向。
通过阿里云 Milvus 和 Dify 平台构建RAG系统
本文介绍了如何结合阿里云 Milvus 向量数据库与低代码 AI 平台 Dify,快速构建企业级检索增强生成(RAG)应用。通过该方案,可有效解决大语言模型的知识局限与“幻觉”问题,提升 AI 应用的回答准确性与可靠性。
让大语言模型在不知道答案时拒绝回答:KnowOrNot框架防止AI幻觉
在政府AI服务中,如何让系统在知识不足时恰当拒绝回答而非生成错误信息是一大挑战。KnowOrNot框架通过构建“知识库外”测试场景,评估AI是否能识别知识边界并合理拒答,从而提升AI服务的可靠性与安全性。
java 入门学习视频_2025 最新 java 入门零基础学习视频教程
《Java 21 入门实操指南(2025年版)》提供了Java最新特性的开发指导。首先介绍了JDK 21和IntelliJ IDEA 2025.1的环境配置,包括环境变量设置和预览功能启用。重点讲解了Java 21三大核心特性:虚拟线程简化高并发编程,Record模式优化数据解构,字符串模板提升字符串拼接可读性。最后通过图书管理系统案例,展示如何运用Record定义实体类、使用Stream API进行数据操作,以及结合字符串模板实现控制台交互。该指南完整呈现了从环境搭建到实际项目开发的Java 21全流程实
火热邀测!DataWorks数据集成支持大模型AI处理
阿里云DataWorks数据集成新增大模型AI处理功能,支持在数据同步中无缝调用通义千问等AI模型,实现文本翻译、情感分析、摘要生成等功能。适用于电商客服、智能汽车、供应链、医疗、金融、法律及教育等多个场景,大幅提升数据处理效率与洞察深度。用户可通过自然语言配置,快速完成高级数据分析与处理,无需额外部署调试。立即申请测试资格,体验智能化数据处理!
京东拍立淘图片搜索 API 接入实践:从图像识别到商品匹配的技术实现
京东拍立淘图片搜索 API 是基于先进图像识别技术的购物搜索接口,支持通过上传图片、URL 或拍摄实物搜索相似商品。它利用机器学习和大数据分析,精准匹配商品特征,提供高效、便捷的搜索体验。接口覆盖京东海量商品资源,不仅支持外观、颜色等多维度比对,还结合用户行为数据实现智能推荐。请求参数包括图片 URL 或 Base64 编码,返回 JSON 格式的商品信息,如 ID、价格、链接等,助力消费者快速找到心仪商品,满足个性化需求。
云上玩转Qwen3系列之二:PAI-LangStudio搭建联网搜索和RAG增强问答应用
本文详细介绍了如何使用 PAI-LangStudio 和 Qwen3 构建基于 RAG 和联网搜索 的 AI 智能问答应用。该应用通过将 RAG、web search 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了额外的联网搜索和特定领域知识库检索的能力,提升了智能回答的效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
electron35-vue3-deepseek客户端流式输出AI对话系统
Electron35-DeepSeek桌面端AI系统|vue3.5+electron+arco客户端ai模板。2025跨平台ai实战electron35+vite6+arco仿DeepSeek/豆包ai流式打字聊天助手。
LIDC-IDRI肺结节数据集分割策略
本文介绍了使用LIDC-IDRI开源数据集进行肺癌检测项目的完整流程,包括数据预处理、训练分割模型和分类模型三个主要步骤。首先,下载包含患者DICOM文件的数据集;其次,克隆预处理代码并配置Pylidc库以生成肺部遮罩图像;最后,通过脚本准备数据集并创建元数据文件。文章还提供了相关GitHub资源链接,帮助读者更好地理解和实现项目。
VideoMind:Chain-of-LoRA突破时间盲区让AI真正看懂长视频
VideoMind是一种新型视频语言代理,专为解决长视频时间定位理解挑战设计。它通过“Chain-of-LoRA”技术结合四个专业角色(Planner、Grounder、Verifier、Answerer)实现高效推理。Planner分析查询并制定计划;Grounder精确定位视频时刻;Verifier验证候选时刻准确性;Answerer生成最终答案。此架构在14个公共基准上表现出色,尤其在长视频定位任务中超越了现有模型,同时保持高内存效率。VideoMind推动了多模态AI的发展,提供了解决复杂视频理解问题的新方法。
DAPO: 面向开源大语言模型的解耦裁剪与动态采样策略优化系统
DAPO(Decoupled Clip and Dynamic Sampling Policy Optimization)是由字节跳动提出的一种突破性的开源大语言模型强化学习系统。基于Qwen2.5-32B基础模型,DAPO在AIME 2024测试中以50分的优异成绩超越了现有最佳模型,
Linux下搭建本地deepseek(附文档下载)
本文介绍了在Linux上搭建本地DeepSeek的步骤。主要涉及安装ollama、下载deepseek模型(1.5b参数版本)和配置ChatboxAI客户端。通过命令行安装ollama后,使用`ollama run deepseek-r1:1.5b`下载模型,并配置环境变量以确保服务正常运行。最后,通过ChatboxAI与模型进行交互。整个过程适合初学者,服务器配置为4核CPU和8GB内存,无GPU,响应速度稍有延迟但可接受。相关资源链接已提供。
让小程序拥有“视觉之眼“:DeepSeek图像识别实战指南
本文介绍如何通过DeepSeek计算机视觉技术,赋予小程序“看懂世界”的能力。从构建视觉感知系统、训练专属视觉词典到创造会思考的界面,详细讲解了实现智能相册、植物识别器和老旧照片修复等功能的步骤。最后探讨性能优化与安全合规要点,展望未来视觉智能应用的无限可能。
阿里云 AI 搜索开放平台集成 DeepSeek 模型
阿里云 AI 搜索开放平台最新上线 DeepSeek -R1系列模型。
美的楼宇科技基于阿里云 EMR Serverless Spark 构建 LakeHouse 湖仓数据平台
美的楼宇科技基于阿里云 EMR Serverless Spark 建设 IoT 数据平台,实现了数据与 AI 技术的有效融合,解决了美的楼宇科技设备数据量庞大且持续增长、数据半结构化、数据价值缺乏深度挖掘的痛点问题。并结合 EMR Serverless StarRocks 搭建了 Lakehouse 平台,最终实现不同场景下整体性能提升50%以上,同时综合成本下降30%。
虾皮(shopee)商品列表接口(虾皮API 系列)
虾皮(Shopee)是东南亚及台湾地区的知名电商平台,提供丰富的商品数据。通过其API接口,开发者可合法获取商品列表信息,包括商品ID、名称、价格等,支持按分类、关键词、价格范围等条件筛选。Python示例代码展示了如何使用API进行请求,并解析返回的JSON数据。应用场景涵盖市场调研、竞品分析、选品决策、价格监控及数据可视化,帮助电商从业者和分析师更好地理解市场动态,优化运营策略。
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
ClickHouse 架构原理及核心特性详解
ClickHouse 是由 Yandex 开发的开源列式数据库,专为 OLAP 场景设计,支持高效的大数据分析。其核心特性包括列式存储、字段压缩、丰富的数据类型、向量化执行和分布式查询。ClickHouse 通过多种表引擎(如 MergeTree、ReplacingMergeTree、SummingMergeTree)优化了数据写入和查询性能,适用于电商数据分析、日志分析等场景。然而,它在事务处理、单条数据更新删除及内存占用方面存在不足。
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
AI开发新范式,PAI模型构建平台升级发布
本次分享由阿里云智能集团产品专家高慧玲主讲,聚焦AI开发新范式及PAI模型构建平台的升级。分享分为四个部分,围绕“人人可用”和“面向生产”两大核心理念展开。通过降低AI工程化门槛、提供一站式全链路服务,PAI平台致力于帮助企业和开发者更高效地实现AI应用。案例展示中,介绍了多模态模型微调在文旅场景的应用,展示了如何快速复现并利用AI解决实际问题。最终目标是让AI技术更普及,赋能各行业,推动社会进步。
Flink 2.0 存算分离状态存储 — ForSt DB
本文整理自阿里云技术专家兰兆千在Flink Forward Asia 2024上的分享,主要介绍Flink 2.0的存算分离架构、全新状态存储内核ForSt DB及工作进展与未来展望。Flink 2.0通过存算分离解决了本地磁盘瓶颈、检查点资源尖峰和作业恢复速度慢等问题,提升了云原生部署能力。ForSt DB作为嵌入式Key-value存储内核,支持远端读写、批量并发优化和快速检查点等功能。性能测试表明,ForSt在异步访问和本地缓存支持下表现卓越。未来,Flink将继续完善SQL Operator的异步优化,并引入更多流特性支持。
Flink SQL Deduplication 去重以及如何获取最新状态操作
Flink SQL Deduplication 是一种高效的数据去重功能,支持多种数据类型和灵活的配置选项。它通过哈希表、时间窗口和状态管理等技术实现去重,适用于流处理和批处理场景。本文介绍了其特性、原理、实际案例及源码分析,帮助读者更好地理解和应用这一功能。
一份写给数据工程师的 Polars 迁移指南:将 Pandas 速度提升 20 倍代码重构实践
Polars作为现代化的数据处理框架,通过先进的工程实践和算法优化,为数据科学工作者提供了高效的数据处理工具。在从Pandas迁移时,理解这些核心概念和最佳实践将有助于充分发挥Polars的性能优势。
Github上的十大RAG(信息检索增强生成)框架
信息检索增强生成(RAG)是一种结合了检索系统和生成模型优势的技术,能够显著提升大型语言模型的性能。RAG通过从外部知识库中检索相关信息,增强模型的输入,从而生成更加准确、符合上下文、实时更新的响应。GitHub上涌现出多个开源RAG框架,如Haystack、RAGFlow、txtai等,每个框架都有独特的功能和特性,适用于不同的应用场景。这些框架不仅提高了模型的准确性和可靠性,还增强了过程的透明度和可解释性。
写歌词的技巧和方法入门指南:点亮音乐创作梦想,妙笔生词智能写歌词软件
对于怀揣音乐创作梦想的人来说,写歌词是关键一步。本文介绍写歌词的技巧和方法,推荐使用《妙笔生词智能写歌词软件》辅助创作,涵盖 AI 智能写词、押韵优化等功能。积累灵感素材,确定主题,构建歌词结构,使用简洁而富有感染力的语言,让创作更轻松。
Selenium中如何实现翻页功能
在使用Python的Selenium库进行网页爬虫开发时,翻页操作是常见需求。本文详细介绍如何通过Selenium实现翻页,包括定位翻页控件、执行翻页动作以及等待页面加载等关键步骤,并提供了基于“下一页”按钮和输入页码两种方式的具体示例代码。此外,还特别提醒开发者注意页面加载完全、动态内容加载及反爬机制等问题,确保爬虫稳定高效运行。
HTML5 Web IndexedDB 数据库详解
IndexedDB 是一种高效的浏览器存储方案,允许在本地存储大量结构化数据,支持索引和事务,适用于需要离线和大数据处理的应用。它由数据库、对象仓库等组成,通过键值对存储数据,确保数据一致性和完整性。本介绍展示了如何创建、读取、更新和删除数据,以及事务和错误处理的最佳实践。
云栖实录 | 阿里云 OpenLake 解决方案重磅发布:多模态数据统一纳管、引擎平权联合计算、数据共享统一读写
阿里云 OpenLake 解决方案重磅发布,构建大数据、搜索、AI 一体化的能力体系,实现多模态数据统一纳管、多种计算引擎平权计算、大数据 AI 一体化开发,助力企业基于数据资产构筑竞争力。
WebDriver与Chrome DevTools Protocol:如何在浏览器自动化中提升效率
本文探讨了如何利用Chrome DevTools Protocol (CDP) 与 Selenium WebDriver 提升浏览器自动化效率,结合代理IP技术高效采集微博数据。通过CDP,开发者可直接操作浏览器底层功能,如网络拦截、性能分析等,增强控制精度。示例代码展示了如何设置代理IP、cookie及user-agent来模拟真实用户行为,提高数据抓取成功率与稳定性。适用于需要频繁抓取互联网数据的应用场景。
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
异步数据加载技巧:实现 DataLoader 的最佳实践
【8月更文第29天】在深度学习中,数据加载是整个训练流程中的一个关键步骤。为了最大化硬件资源的利用率并提高训练效率,使用高效的数据加载策略变得尤为重要。本文将探讨如何通过异步加载和多线程/多进程技术来优化 DataLoader 的性能。
ONNX 与实时应用:延迟敏感场景下的部署策略
【8月更文第27天】在实时应用中,如自动驾驶汽车、视频分析系统等,快速响应和高吞吐量是至关重要的。Open Neural Network Exchange (ONNX) 提供了一种标准化的方法来部署机器学习模型,使其能够在不同的硬件和平台上高效运行。本文将探讨如何利用 ONNX 在延迟敏感的应用场景中部署模型,并提供一些策略和示例代码来确保低延迟和高吞吐量。
ONNX 与量化:提高模型效率
【8月更文第27天】随着人工智能技术的广泛应用,模型部署变得越来越重要。为了在资源受限的设备上运行复杂的机器学习模型,模型量化技术成为了一种有效的手段。Open Neural Network Exchange (ONNX) 作为一种开放格式,支持在不同框架之间交换训练好的模型,同时也支持模型量化。本文将探讨如何结合 ONNX 和模型量化技术来提高模型的效率,减少模型大小并加快推理速度。
Big Data for AI实践:面向AI大模型开发和应用的大规模数据处理套件
文叙述的 Big Data for AI 最佳实践,基于阿里云人工智能平台PAI、MaxCompute自研分布式计算框架MaxFrame、Data-Juicer等产品和工具,实现了大模型数据采集、清洗、增强及合成大模型数据的全链路,解决企业级大模型开发应用场景的数据处理难题。
赌你一定想要!OpenDataLab首款大模型多模态标注平台Label-LLM正式开源
Label-LLM 是一款专为大模型训练设计的多模态文本对话标注工具,支持团队协作,让标注工作变得简单高效。它不仅涵盖丰富的任务类型,如回答采集、偏好收集和内容评估等,还支持多模态数据标注,包括图像、视频和音频。Label-LLM具备预标注载入功能,能大幅提升工作效率,并提供全方位的任务管理与可视化分析,确保标注质量。快来体验这款强大的标注平台吧
想要刻录蓝光光盘吗? 快来了解最好的蓝光刻录软件!
在数字娱乐蓬勃发展的今天,追求高清震撼的视听体验已成为趋势。面对众多高清视频制作工具的选择难题,DVDFab Blu-ray Creator脱颖而出,被誉为最佳蓝光刻录软件。它不仅支持多种视频格式输入(如MP4, MKV)及高清1080p输出,还能制作个性化菜单,兼容不同输出介质(BD-R, BD-RE等)。只需几步即可完成从视频导入到成品输出的全过程,无论是家庭回忆还是专业项目都能完美呈现。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。