Python实现支持向量机SVM分类模型线性SVM决策过程的可视化项目实战

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: Python实现支持向量机SVM分类模型线性SVM决策过程的可视化项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

支持向量机是由间隔最大化和高维映射两大部件组成。间隔最大化是目标,支持向量机的损失函数依靠间隔计算,能让间隔达到最大的就是支持向量机要“学习”的过程。

高维映射用于解决线性不可分问题,可以理解为对数据的“预处理”。对于那些你中有我、间不容发的非线性分布数据,首先通过核函数映射至高维,映射后的数据集呈线性分布,为使用线性方法分类创造了条件。

最后归纳一下,使用支持向量机进行分类经过三个步骤:

1)选取一个合适的数学函数作为核函数。

2)使用核函数进行高维映射,数据点在映射后由原本的线性不可分变为线性可分。

3)间隔最大化,用间隔作为度量分类效果的损失函数,最终找到能够让间隔最大的超平面,分类也就最终完成了。 

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

数据包括两个Excel数据集:

data1(线性数据集)

x1

 

x2

 

y

标签

data2(非线性数据集)

x1

 

x2

 

y

标签

 

数据详情如下(部分展示):

image.png image.png

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

image.png

关键代码:

image.png

3.2 缺失值统计

使用Pandas工具的info()方法查看数据是否有缺失值:

image.png

从图中可以看到,数据集1没有缺失值。

3.2 描述性统计分析

使用Pandas工具的describe ()方法进行描述性统计分析:

 

image.png

从上图可以看到,每个数据项的数量、平均值、标准差、最小值、最大值、分位数。

4.特征工程

4.1 构建特征和标签

关键代码如下:

image.png

 

5.探索性数据分析

5.1 可视化特征数据集:绘制散点图

image.png

从图中可以看到,数据集1中两个特征变量的散点图分布情况。

5.2 画决策边界:散点图中制作网格

image.png

通过上图可以看到,散点图中中布满了网格小点。

 

6.构建支持向量机分类模型

主要使用SVC算法,用于构建决策边界。

6.1 建模,计算决策边界并找出网格上每个点到决策边界的距离

 

模型名称

参数值

SVM分类模型

kernel="linear"

 

image.png

从上图可以看到,从上图可以看到三条等高线,这三条等高线是分别基于Z的值为-1、0、1绘制的。

关键代码:

image.png

6.2 模型探索

进行模型预测、计算模型的准确率和模型中支持向量的个数:

image.png

从上图可以看到,可以看到模型的预测值、支持向量和支持向量的个数为2。

 

关键参数代码:

image.png

6.3 推广到非线性情况

数据集2特征的散点图:

image.png

从上图可以看到,是大圆里面套了一个小圆。

绘制带有决策边界的散点图:

image.png

从上图可以看出,明显,现在线性SVM已经不适合于数据集2

6.4为非线性数据增加维度并绘制3D图像

image.png

从上图可以看到,数据集2明显是线性可分的了:我们可以使用一个平面来将数据完全分开,并使平面的上方的所有数据点为一类,平面下方的所有数据点为另一类,这就是决策树模型的高维映射。

7.结论与展望

综上所述,本项目采用了SVM分类模型来绘制线性数据和非线性数据决策边界的可视化图,最终证明了支持向量机分类模型具备非线性数据的分类能力,即具有高维映射的能力


# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1B1ACxL12hRJOomiTHov66g 
提取码:if2f
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
【python】python当当数据分析可视化聚类支持向量机预测(源码+数据集+论文)【独一无二】
【python】python当当数据分析可视化聚类支持向量机预测(源码+数据集+论文)【独一无二】
|
2月前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【9月更文挑战第12天】决策树算法作为机器学习领域的一颗明珠,凭借其直观易懂和强大的解释能力,在分类与回归任务中表现出色。相比传统统计方法,决策树通过简单的分支逻辑实现了数据的精准分类。本文将借助Python和scikit-learn库,以鸢尾花数据集为例,展示如何使用决策树进行分类,并探讨其优势与局限。通过构建一系列条件判断,决策树不仅模拟了人类决策过程,还确保了结果的可追溯性和可解释性。无论您是新手还是专家,都能轻松上手,享受机器学习的乐趣。
46 9
|
2月前
|
机器学习/深度学习 算法 Python
从菜鸟到大师:一棵决策树如何引领你的Python机器学习之旅
【9月更文挑战第9天】在数据科学领域,机器学习如同璀璨明珠,吸引无数探索者。尤其对于新手而言,纷繁复杂的算法常让人感到迷茫。本文将以决策树为切入点,带您从Python机器学习的新手逐步成长为高手。决策树以其直观易懂的特点成为入门利器。通过构建决策树分类器并应用到鸢尾花数据集上,我们展示了其基本用法及效果。掌握决策树后,还需深入理解其工作原理,调整参数,并探索集成学习方法,最终将所学应用于实际问题解决中,不断提升技能。愿这棵智慧之树助您成为独当一面的大师。
42 3
|
2月前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【9月更文挑战第7天】当我们身处数据海洋,如何提炼出有价值的洞察?决策树作为一种直观且强大的机器学习算法,宛如智慧之树,引领我们在繁复的数据中找到答案。通过Python的scikit-learn库,我们可以轻松实现决策树模型,对数据进行分类或回归分析。本教程将带领大家从零开始,通过实际案例掌握决策树的原理与应用,探索数据中的秘密。
46 1
|
3月前
|
机器学习/深度学习 前端开发 数据挖掘
基于Python Django的房价数据分析平台,包括大屏和后台数据管理,有线性、向量机、梯度提升树、bp神经网络等模型
本文介绍了一个基于Python Django框架开发的房价数据分析平台,该平台集成了多种机器学习模型,包括线性回归、SVM、GBDT和BP神经网络,用于房价预测和市场分析,同时提供了前端大屏展示和后台数据管理功能。
|
3月前
|
机器学习/深度学习 数据采集 算法
【python】python基于微博互动数据的用户类型预测(随机森林与支持向量机的比较分析)(源码+数据集+课程论文)【独一无二】
【python】python基于微博互动数据的用户类型预测(随机森林与支持向量机的比较分析)(源码+数据集+课程论文)【独一无二】
|
3月前
|
数据可视化 Python
【2023高教社杯】C题 蔬菜类商品的自动定价与补货决策 问题分析、数学模型及python代码实现
本文介绍了2023年高教社杯数学建模竞赛C题,涉及蔬菜类商品的自动定价与补货决策,包括问题分析、数学模型的构建以及Python代码实现,旨在优化商超的补货和定价策略以提高收益。
80 1
|
3月前
|
机器学习/深度学习 运维 算法
深入探索机器学习中的支持向量机(SVM)算法:原理、应用与Python代码示例全面解析
【8月更文挑战第6天】在机器学习领域,支持向量机(SVM)犹如璀璨明珠。它是一种强大的监督学习算法,在分类、回归及异常检测中表现出色。SVM通过在高维空间寻找最大间隔超平面来分隔不同类别的数据,提升模型泛化能力。为处理非线性问题,引入了核函数将数据映射到高维空间。SVM在文本分类、图像识别等多个领域有广泛应用,展现出高度灵活性和适应性。
133 2
|
3月前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【8月更文挑战第2天】决策树算法以其直观性和解释性在机器学习领域中独具魅力,尤其擅长处理非线性关系。相较于复杂模型,决策树通过简单的分支逻辑实现数据分类,易于理解和应用。本示例通过Python的scikit-learn库演示了使用决策树对鸢尾花数据集进行分类的过程,并计算了预测准确性。虽然决策树优势明显,但也存在过拟合等问题。即便如此,无论是初学者还是专家都能借助决策树的力量提升数据分析能力。
42 4
|
3月前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【8月更文挑战第3天】在数据的海洋中探寻真知,决策树犹如智慧之树,以其直观易懂的强大功能,引领我们逐步缩小决策范围,轻松获取数据洞察。本篇将带您踏上Python机器学习之旅,从理解决策树为何受青睐开始,通过scikit-learn库实现鸢尾花数据集分类,解析其决策机制,并掌握调参技巧,最终优化模型性能,共同摘取数据科学的甜美果实。
50 1

热门文章

最新文章