使用DataWorks Notebook实现智能图片标注,给你的图片加个“注释”
本文介绍如何使用DataWorks Notebook结合视觉识别模型RAM和自然语言处理模型BERT实现多模态图片标注,为智能内容生成和多模态数据分析的广泛应用提供支持。
无头浏览器与请求签名技术
本文分享了在面对Cloudflare防护(如Amazon网站)时,如何通过无头浏览器、请求签名技术和爬虫代理IP实现数据采集的故障排查与改进方案。首先,介绍了从常规请求失败到引入Selenium无头浏览器的过程,解决了Cookie和User-Agent检测问题。接着,通过生成请求签名绕过二次验证,并利用代理IP规避访问风险。最后,提出了架构改进方案,包括无头浏览器集群化、签名算法优化、代理池管理和多层次容错机制,以提高系统的稳定性和扩展性。示例代码展示了如何设置代理、获取Cookie并生成签名,成功采集商品信息。
FANformer:融合傅里叶分析网络的大语言模型基础架构
近期大语言模型(LLM)的基准测试结果显示,OpenAI的GPT-4.5在某些关键评测中表现不如规模较小的模型,如DeepSeek-V3。这引发了对现有LLM架构扩展性的思考。研究人员提出了FANformer架构,通过将傅里叶分析网络整合到Transformer的注意力机制中,显著提升了模型性能。实验表明,FANformer在处理周期性模式和数学推理任务上表现出色,仅用较少参数和训练数据即可超越传统Transformer。这一创新为解决LLM扩展性挑战提供了新方向。
京东、淘宝、义乌购等电商平台的Api数据分析
京东、淘宝、义乌购等电商平台的数据分析涵盖数据收集、预处理、分析及应用优化。数据来源包括数据库、日志文件和网络爬虫,通过SQL查询、日志解析和爬虫抓取获取数据。预处理阶段进行数据清洗、缺失值处理和异常值检测。分析方法包括描述性分析、对比分析、漏斗分析等,关注成交金额、转化率等关键指标。最终基于分析结果制定策略并评估效果,持续优化平台运营。
Python测试淘宝店铺所有商品接口的详细指南
本文详细介绍如何使用Python测试淘宝店铺商品接口,涵盖环境搭建、API接入、签名生成、请求发送、数据解析与存储、异常处理等步骤。通过具体代码示例,帮助开发者轻松获取和分析淘宝店铺商品数据,适用于电商运营、市场分析等场景。遵守法规、注意调用频率限制及数据安全,确保应用的稳定性和合法性。
JSON数据解析实战:从嵌套结构到结构化表格
在信息爆炸的时代,从杂乱数据中提取精准知识图谱是数据侦探的挑战。本文以Google Scholar为例,解析嵌套JSON数据,提取文献信息并转换为结构化表格,通过Graphviz制作技术关系图谱,揭示文献间的隐秘联系。代码涵盖代理IP、请求头设置、JSON解析及可视化,提供完整实战案例。
基于云服务器的数仓搭建-hive/spark安装
本文介绍了在本地安装和配置MySQL、Hive及Spark的过程。主要内容包括: - **MySQL本地安装**:详细描述了内存占用情况及安装步骤,涉及安装脚本的编写与执行,以及连接MySQL的方法。 - **Hive安装**:涵盖了从上传压缩包到配置环境变量的全过程,并解释了如何将Hive元数据存储配置到MySQL中。 - **Hive与Spark集成**:说明了如何安装Spark并将其与Hive集成,确保Hive任务由Spark执行,同时解决了依赖冲突问题。 - **常见问题及解决方法**:列举了安装过程中可能遇到的问题及其解决方案,如内存配置不足、节点间通信问题等。
为什么要用TorchEasyRec processor?
TorchEasyRec处理器支持Intel和AMD的CPU服务器及GPU推理,兼容普通PyTorch模型。它具备TorchEasyRec的特征工程(FG)和模型推理功能,提供更快的推理性能,降低成本。通过Item Feature Cache特性,它能够缓存特征以减少网络传输,进一步提升特征工程与推理的速度。
淘宝直播间弹幕 API 接口(淘宝 API 系列)
淘宝直播间弹幕API助力电商直播数据分析与优化。通过实时获取弹幕信息(昵称、内容、时间、类型),商家可精准把握消费者需求,优化直播内容;开发者可构建数据分析工具和智能客服系统。接口采用WebSocket协议,支持全双工通信,确保数据实时性。请求需包含直播间ID(room_id),并遵循平台使用规范。示例代码展示了Python调用方法,需安装`websocket-client`库并处理重连与异常。
优质网络舆情监测系统大盘点
一款出色的网络舆情监测系统,不仅能够助力相关主体迅速捕捉舆情信息,有效应对危机,还能够助力其更好地把握舆论动态,维护自身形象。那么,市场上有哪些比较好的网络舆情监测系统呢?这里,本文有为各位整理了一些好用的舆情检测系统,以供各位参考!
关键词搜索爱回收商品列表API接口(爱回收API系列)
爱回收作为二手电子产品交易平台,提供丰富的商品资源。其API接口允许开发者通过关键词搜索商品列表,获取商品名称、类别、品牌、预估回收价格等信息,支持分页展示和自定义每页数量。接口采用HTTP GET请求,响应格式为JSON。以下是Python示例代码,展示如何使用该接口进行搜索。
一套优秀的反向海淘独立站系统必备的10大特质
这套反向海淘独立站系统具备十大特质:1. 商品聚合与自动化采购,无缝对接国内电商平台;2. 多语言本地化体验,适应全球用户;3. 智能物流与清关,优化运输路径;4. 多币种支付保障资金安全;5. 合规与税务自动化处理;6. AI导购提升用户体验;7. 营销工具促进增长;8. 自动化售后与纠纷处理;9. 数据驱动运营决策;10. 微服务架构确保扩展性。成功案例如Superbuy和Panli展示了其高效性和市场竞争力。
SmolLM2:多阶段训练策略优化和高质量数据集,小型语言模型同样可以实现卓越的性能表现
SmolLM2 通过创新的多阶段训练策略、高质量数据集的构建与优化,以及精细的模型后训练调优,在 1.7B 参数规模下实现了卓越的性能表现,并在多个基准测试中超越了同等规模甚至更大规模的语言模型。
Flink基于Paimon的实时湖仓解决方案的演进
本文整理自阿里云智能集团苏轩楠老师在Flink Forward Asia 2024论坛的分享,涵盖流式湖仓架构的背景介绍、技术演进和未来发展规划。背景部分介绍了ODS、DWD、DWS三层数据架构及关键组件Flink与Paimon的作用;技术演进讨论了全量与增量数据处理优化、宽表构建及Compaction操作的改进;发展规划则展望了Range Partition、Materialized Table等新功能的应用前景。通过这些优化,系统不仅简化了复杂度,还提升了实时与离线处理的灵活性和效率。
基于阿里云 Milvus + DeepSeek + PAI LangStudio 的低成本高精度 RAG 实战
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
DeepSeek 如何开启大模型的下半场战争|DeepSeek十日谈终结版
随着人工智能技术的飞速发展,大模型成为行业变革的核心力量。DeepSeek作为先锋,通过技术突破(如高效训练、自适应学习)、深耕应用场景(金融科技、医疗健康、智能制造)、构建开放生态(开发者社区、产学研合作)和全球化战略布局(市场拓展、品牌建设),在竞争激烈的市场中脱颖而出。本文从四个维度探讨DeepSeek的制胜之道,展望其未来发展,引领人工智能新篇章。
aliyun评测零门槛、即刻拥有 DeepSeek-R1 满血版
DeepSeek-R1满血版是一款零门槛、高性能的深度学习工具,旨在帮助开发者和研究人员高效实现创新。评测显示,其操作界面设计友好,左右分屏布局使理论与实践紧密结合,极大提升了操作连贯性和效率。用户可轻松获取API-KEY,并通过Chatbox配置进行深度学习对话,整个过程简单流畅。该工具在部署集成性、易用性及高性能计算支持方面表现出色,尤其适合本地软件部署,满足用户的实际需求。阿里云提供的详尽文档和引导也使得初次使用者能快速上手,体验极佳。
义乌购商品列表数据接口(义乌购API系列)
义乌购作为全球知名的小商品批发平台,提供了丰富的商品数据接口。通过其商品列表接口,开发者和商家可以获取商品名称、价格、库存等信息,助力电商数据分析、竞品调研及店铺运营优化。本文详细介绍该接口的概念、请求方式、参数与响应数据,并提供Python请求示例,帮助用户高效利用接口资源。接口支持HTTP/HTTPS协议的GET和POST请求,返回JSON格式数据,需在开放平台注册并申请权限,遵守调用限制。
【AI大模型面试宝典十一】- 评估应用篇
【AI大模型面试宝典】聚焦高频考点,拆解核心原理!涵盖基础能力、对齐与效率评估,详解MMLU、C-Eval、HumanEval等基准,教你应对幻觉检测、指标设计等面试难题。代码实操+避坑指南,助你精准拿分,offer到手!点赞关注,持续更新中→ #大模型面试 #AI求职
【AI大模型面试宝典七】- 训练优化篇
【AI大模型面试宝典】聚焦微调核心技术:详解指令微调、RLHF对齐、LoRA高效参数调整原理与实现,涵盖矩阵低秩分解、初始化策略、变体优化及Prompt Tuning等方法对比,助你攻克大模型面试核心考点,精准提升offer竞争力!
基于深度学习的车牌识别系统
在智能交通快速发展背景下,传统车牌识别技术受限于复杂环境,难以满足高精度需求。深度学习凭借强大特征学习能力,显著提升识别准确率与鲁棒性,成为主流技术方向。本文综述基于YOLOv8等先进模型的研究进展,探讨系统实现关键步骤,推动智慧交通与城市治理智能化升级。
别被“结构化”骗了:聊聊 Spark Structured Streaming 的原理与那些年我踩过的坑
别被“结构化”骗了:聊聊 Spark Structured Streaming 的原理与那些年我踩过的坑
康存数科携手蚂蚁百宝箱共研预付式消费 AI Agent,解决预付消费信任问题助力体验升级
康存数据与蚂蚁百宝箱达成合作,联合开发预付式消费领域AI Agent,融合双方技术与行业优势,基于大模型打造覆盖消费者、商家、监管等多端的智能服务生态,推动预付消费迈向AI驱动的信任新阶段。
大模型应用开发中MCP与Function Call的关系与区别
MCP与Function Call是大模型应用中两大关键技术。前者为跨模型标准化通信协议,实现工具与模型解耦;后者是模型调用外部功能的内置机制。二者互补协作,推动AI应用向更开放、灵活、可扩展的方向发展。
MySQL 学习资源精选:从入门到优化的高效清单
本文精选MySQL学习资源,按“入门→进阶→实战”三阶段系统梳理视频、书籍、项目等优质资料,结合科学计划与实操建议,帮助学习者高效掌握核心语法、底层原理与性能优化,快速实现从零基础到能独立设计与优化数据库的跃迁。
微服务服务注册与发现
本课程以黑马商城项目为案例,学习微服务架构的构建与应用。内容涵盖单体架构与微服务架构的对比、分布式与云原生架构介绍,并通过Spring Cloud Alibaba技术栈实现服务拆分、Nacos服务注册与发现、OpenFeign远程调用等核心功能,最终完成从单体到微服务的项目重构与优化实践。
分布式事务Seata
本章节深入探讨分布式事务问题,涵盖CAP定理与BASE理论,重点讲解Seata框架的XA、AT、TCC及SAGA四种模式原理与实现,并指导搭建高可用TC服务集群,确保微服务架构下的数据一致性与系统可靠性。
异步消息组件MQ高级
本文详细讲解了消息队列(RabbitMQ)的可靠性保障机制,涵盖生产者重试与确认、消费者确认、消息持久化、幂等性处理及延迟消息等核心方案,并通过自动取消超时订单场景实践,确保消息不丢失、不重复、最终一致。
基于yolov8的安全帽检测系统
本研究基于YOLOv8目标检测算法,构建安全帽佩戴智能识别系统,针对建筑、矿山等高危作业场景,实现对人员头部防护的实时监控与预警。系统结合深度学习与计算机视觉技术,通过高效标注数据集、优化模型结构,提升检测精度与速度,在1080P图像下可达35FPS以上,满足工业级实时性需求。相比传统人工巡查,显著降低漏检率,提高监管效率,助力高危行业向智能化安全管理转型,具有重要应用价值与推广前景。
大模型训练方法与技术术语解释
预训练、微调、RLHF、思维链等技术共同构建大模型能力。预训练打基础,微调适配具体任务,RLHF融入人类偏好,思维链提升推理,少/零样本学习增强泛化,指令微调优化交互,自监督学习利用海量无标注数据,温度控制生成风格,蒸馏实现知识迁移,缩放定律指导模型扩展。这些核心技术推动大模型在多领域智能应用中持续突破,实现从理解到创造的跨越。(238字)
Gateway服务网关
网关是微服务的统一入口,实现请求路由、权限控制与限流。基于Spring Cloud Gateway可快速搭建高性能网关,支持断言与过滤器灵活配置,并解决跨域问题,提升系统安全性和可维护性。
不写规则也能抽数据?
本文探讨了企业在招聘数据分析中对薪资信息采集的挑战,分析了从纯规则采集到智能解析的发展,并指出智能解析在招聘场景中的局限性。推荐企业采用人工规则与智能解析相结合的策略,以确保数据的稳定性和可解释性。
京东商品详情 API 实战指南
京东商品详情API通过抓包分析前端异步请求,获取商品标题、价格、库存等核心信息,适用于电商数据分析与比价系统。本文详解接口逻辑、关键参数及Python实现,并强调反爬策略与合规性,助力开发者安全高效采集数据。(238字)
四、Hive DDL表定义、数据类型、SerDe 与分隔符核心
Hive 中的表是数据仓库的核心容器,定义了数据的结构和存储方式。本文系统讲解了 Hive 中创建表的语法与关键参数,包括字段类型、分隔符设置、SerDe 使用等内容,特别通过结构化与复杂数据类型(如 ARRAY、MAP、STRUCT)的案例讲解,让读者理解如何让 Hive 正确“读懂”你的数据。配合常见示例与练习题,帮你打好 Hive 表设计的基础,轻松驾驭文本、JSON 等多格式数据。数据如何入库、如何被解析,一文看懂!
CNFans模式淘宝1688代购系统搭建指南
CNFans代购系统整合1688供应链与淘宝渠道,为跨境用户提供一站式代购服务。通过API对接实现商品、订单、支付数据自动化,支持多币种结算与全程物流追踪。面向小微电商、海外代购及价格敏感型消费者,提供代购、质检、仓储、物流等全流程服务,保障正品与性价比。盈利涵盖服务费、增值服务、广告与会员订阅,打造安全透明的跨境代购生态平台。(239字)
1688 商品详情 API 接口实战指南
1688开放平台alibaba.item.get接口,用于获取商品全量信息,支持选品、ERP同步等场景。需企业认证、申请权限并配置IP白名单。通过AppKey/Secret生成签名,调用时指定item_id等参数,返回商品标题、价格、SKU、图片等字段。默认5次/秒调用频次,建议按需请求、本地缓存、异步处理以提升效率。
Spark 批处理调优这点事:资源怎么要、Shuffle 怎么省、序列化怎么选?我用这些年踩过的坑告诉你
Spark 批处理调优这点事:资源怎么要、Shuffle 怎么省、序列化怎么选?我用这些年踩过的坑告诉你
闲鱼商品详情API完整指南
闲鱼商品详情API(goodfish.item_get)通过商品ID获取商品信息,支持GET请求,返回JSON格式数据,包含商品、卖家、图片视频等详情,适用于多场景开发,需遵守调用限制与合规要求。
AI 问答占 52%!长沙别墅装修 GEO 突围:30 天引用率暴涨 40%
周有贵,巴黎学院人工智能博士,GGI商学院GEO首席技术专家,专注AI时代数字营销革新。2025年12月1日,长沙著名别墅设计师张主华专程拜访交流,共探GEO技术在装修设计行业中的AI引流逻辑与实操应用。面对生成式AI问答入口占比突破52%的新趋势,传统SEO正被GEO取代——从链接点击到答案呈现,企业需通过构建灯塔内容、E-E-A-T信任链与结构化数据,让品牌信息被AI优先引用。本次对话揭示:未来流量之争,本质是“被AI推荐”的能力之争。
Python | 随机搜索参数优化的XGBoost+SHAP可解释性分析回归预测及可视化算法
本教程将带你掌握Python中XGBoost模型的随机搜索调参、SHAP可解释性分析及多种可视化技术,涵盖特征相关性热图、散点密度图、超参数优化等核心内容,助力科研论文与实际项目应用。
2026版基于python大数据的电影分析可视化系统
本系统基于Python大数据技术,整合票房、评分、类型等多源电影数据,利用Pandas、MySQL、Django等实现数据处理与存储,结合Vue构建可视化平台,助力制片、投资与观影决策。
基于深度学习的健康饮食推荐系统
本研究聚焦基于深度学习的健康饮食推荐系统,针对慢性病高发与饮食不健康问题,结合Spring Boot、Vue.js、MySQL等技术,构建个性化、智能化的饮食管理平台,提升用户健康管理效率。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。