只需完成手画线稿,让AI算法帮你自动上色
本文介绍了如何利用图像处理技术生成手绘风格图像及自动上色的方法。内容涵盖图像灰度化、梯度调整、虚拟深度实现手绘效果,以及使用 Python 编程实现相关算法。此外,还介绍了 AI 工具 Style2Paints V4.5,其可为线稿自动上色并支持多种线稿类型,如插画和手绘铅笔稿,适用于艺术创作与图像处理领域。
WebAssembly 与 Java 结合的跨语言协作方案及性能提升策略研究
本文深入探讨了WebAssembly与Java的结合方式,介绍了编译Java为Wasm模块、在Java中运行Wasm、云原生集成等技术方案,并通过金融分析系统的应用实例展示了其高性能、低延迟、跨平台等优势。结合TeaVM、JWebAssembly、GraalVM、Wasmer Java等工具,帮助开发者提升应用性能与开发效率,适用于Web前端、服务器端及边缘计算等场景。
NSA稀疏注意力深度解析:DeepSeek如何将Transformer复杂度从O(N²)降至线性,实现9倍训练加速
本文将深入分析NSA的架构设计,通过详细的示例、可视化展示和数学推导,构建对其工作机制的全面理解,从高层策略到底层硬件实现均有涉及。
Flink Forward Asia 2025 城市巡回 · 上海站
Flink Forward Asia 2025 城市巡回上海站重磅来袭!8月16日,顶尖技术专家齐聚,共探实时计算前沿趋势与行业实践。大会涵盖技术分享、实战案例与开源生态共建,支持线上直播预约。立即报名,共赴技术盛宴!
分布式新闻数据采集系统的同步效率优化实战
本文介绍了一个针对高频新闻站点的分布式爬虫系统优化方案。通过引入异步任务机制、本地缓存池、Redis pipeline 批量写入及身份池策略,系统采集效率提升近两倍,数据同步延迟显著降低,实现了分钟级热点追踪能力,为实时舆情监控与分析提供了高效、稳定的数据支持。
DataWorks 千万级任务调度与全链路集成开发治理赋能智能驾驶技术突破
智能驾驶数据预处理面临数据孤岛、任务爆炸与开发运维一体化三大挑战。DataWorks提供一站式的解决方案,支持千万级任务调度、多源数据集成及全链路数据开发,助力智能驾驶模型数据处理与模型训练高效落地。
1688工厂信息接口指南
1688工厂信息接口用于获取供应商基础信息、生产能力及交易信用数据,支持供应链分析与评估。核心功能包括企业信息、生产能力、交易勋章、认证资料等。调用需申请接口权限,配置商品ID与返回字段。
阿里云连续6年入选 Gartner®ABI 魔力象限报告,中国唯一!
近日,Gartner发布2025年《分析与商业智能平台魔力象限》报告,阿里云Quick BI第六年入选“挑战者”象限。报告肯定其在可视化、报表及自然语言查询(NLQ)方面的竞争力,并认可其融合AI与BI能力、推动数据分析民主化的创新成果。Quick BI已在零售、金融、制造等多个行业落地应用,助力企业实现高效数据驱动决策。
云上AI推理平台全掌握 (1):PAI-EAS LLM服务一键压测
在AI技术飞速发展的今天,大语言模型(LLM)、多模态模型等前沿技术正深刻改变行业格局。推理服务是大模型从“实验室突破”走向“产业级应用”的必要环节,需直面高并发流量洪峰、低延时响应诉求、异构硬件优化适配、成本精准控制等复杂挑战。 阿里云人工智能平台 PAI 致力于为用户提供全栈式、高可用的推理服务能力。在本系列技术专题中,我们将围绕分布式推理架构、Serverless 弹性资源全球调度、压测调优和服务可观测等关键技术方向,展现 PAI 平台在推理服务侧的产品能力,助力企业和开发者在 AI 时代抢占先机,让我们一起探索云上 AI 推理的无限可能,释放大模型的真正价值!
Post-Training on PAI (1):一文览尽开源强化学习框架在PAI平台的应用
Post-Training(即模型后训练)作为大模型落地的重要一环,能显著优化模型性能,适配特定领域需求。相比于 Pre-Training(即模型预训练),Post-Training 阶段对计算资源和数据资源需求更小,更易迭代,因此备受推崇。近期,我们将体系化地分享基于阿里云人工智能平台 PAI 在强化学习、模型蒸馏、数据预处理、SFT等方向的技术实践,旨在清晰地展现 PAI 在 Post-Training 各个环节的产品能力和使用方法,欢迎大家随时交流探讨。
跨境卖家必看:1688店铺订单列表,订单详情,订单物流接口详解
1688平台提供丰富的API接口,涵盖商品、订单、物流等核心业务场景。主要接口包括:**order.list**(查询订单列表)、**order.get**(获取订单详情)及**logistics.track**(查询物流信息),均支持GET请求方式,广泛应用于跨境寻源、数据采集、ERP系统等场景。
赛事比分怎么实现实时更新?从采集到推送的“毫秒级“科技揭秘!
实时比分更新背后的技术奥秘,远比你想象的复杂!从数据采集、传输、处理到用户推送,每个环节都充满挑战。情报来源包括官方接口、AI视觉识别和人工录入;传输方式从HTTP轮询到WebSocket,追求毫秒级延迟;数据清洗确保准确性,用户推送注重适配与优先级。开发者还需规避常见坑点,如消息队列、时区转换等。未来,AI预测、边缘计算甚至量子通信将让零延迟成为可能。想了解如何打造像顶级中场般精准、快速且可靠的比分系统吗?本文为你深度拆解!
App Trace技术解析:传参安装、一键拉起与快速安装
本文从开发者视角解析App Trace技术的关键功能与实现方法,涵盖传参安装、一键拉起和快速安装技术。详细介绍了Android和iOS平台的具体实现代码与配置要点,探讨了参数丢失、跨平台一致性及iOS限制等技术挑战的解决方案,并提供了测试策略、监控指标和性能优化的最佳实践建议,帮助开发者提升用户获取效率与体验。
提升长序列建模效率:Mamba+交叉注意力架构完整指南
本文探讨了Mamba架构中交叉注意力机制的集成方法,Mamba是一种基于选择性状态空间模型的新型序列建模架构,擅长处理长序列。通过引入交叉注意力,Mamba增强了多模态信息融合和条件生成能力。文章从理论基础、技术实现、性能分析及应用场景等方面,详细阐述了该混合架构的特点与前景,同时分析了其在计算效率、训练稳定性等方面的挑战,并展望了未来优化方向,如动态路由机制和多模态扩展,为高效序列建模提供了新思路。
使用DataWorks PyODPS节点调用XGBoost算法
本文介绍如何在DataWorks中通过PyODPS3节点调用XGBoost算法完成模型训练与测试,并实现周期离线调度。主要内容包括:1) 使用ODPS SQL构建数据集;2) 创建PyODPS3节点进行数据处理与模型训练;3) 构建支持XGBoost的自定义镜像;4) 测试运行并选择对应镜像。适用于需要集成机器学习算法到大数据工作流的用户。
手把手教你抓取京东商品评论:API 接口解析与 Python 实战
京东商品评论蕴含用户对产品质量、体验和服务的真实反馈,分析这些数据有助于企业优化产品和满足用户需求。由于京东未提供官方API,需通过逆向工程获取评论数据。其主要接口为“商品评论列表接口”,支持按商品ID、评分、排序方式等参数获取评论,返回JSON格式数据,包含评论列表、摘要(如好评率)及热门标签等信息。
Hologres+函数计算+Qwen3,对接MCP构建企业级数据分析 Agent
本文介绍了通过阿里云Hologres、函数计算FC和通义千问Qwen3构建企业级数据分析Agent的解决方案。大模型在数据分析中潜力巨大,但面临实时数据接入与跨系统整合等挑战。MCP(模型上下文协议)提供标准化接口,实现AI模型与外部资源解耦。方案利用SSE模式连接,具备高实时性、良好解耦性和轻量级特性。Hologres作为高性能实时数仓,支持多源数据毫秒级接入与分析;函数计算FC以Serverless模式部署,弹性扩缩降低成本;Qwen3则具备强大的推理与多语言能力。用户可通过ModelScope的MCP Playground快速体验,结合TPC-H样例数据完成复杂查询任务。
Qwen3 全尺寸模型支持通过阿里云PAI-ModelGallery 一键部署
Qwen3 是 Qwen 系列最新一代的大语言模型,提供了一系列密集(Dense)和混合专家(MOE)模型。目前,PAI 已经支持 Qwen3 全系列模型一键部署,用户可以通过 PAI-Model Gallery 快速开箱!
SecMulti-RAG:兼顾数据安全与智能检索的多源RAG框架,为企业构建不泄密的智能搜索引擎
本文深入解析SecMulti-RAG框架,该框架通过整合企业内部知识库、预构建专家知识及受控外部大语言模型,结合保密性过滤机制,解决企业在部署AI助手时面临的信息准确性、数据安全性和成本控制问题。它采用多层策略,利用三种知识来源(动态更新的企业知识、专家预写知识和按需外部知识),并通过微调的开源LLM生成最终响应,确保安全性与性能。实验表明,SecMulti-RAG在汽车行业技术报告生成任务中显著优于传统RAG系统,展现了其在企业环境中的实用性和优势。
这插件太危险了!PDFParser自动扒取PDF每天躺赚300+的暴利搬运术
本文介绍了如何使用PHP提取PDF文档中的文字内容。为解决PDF文档“不可编辑”或“文本无法复制”的问题,推荐使用免费的PHP库——PDFParser。通过Composer安装后,可利用其简单强大的API解析PDF文件,提取文本内容。文章详细演示了获取PDF基本信息、全文内容、指定页内容及循环输出每页文本的方法,并附带中英文PDF示例,操作简便实用。
Flink Shuffle 技术演进之路
本文由阿里云智能Flink团队郭伟杰与哔哩哔哩蒋晓峰在Flink Forward Asia 2024上的分享整理而成,聚焦Flink Shuffle技术的演进与未来规划。内容涵盖低延迟的Pipelined Shuffle、高吞吐的Blocking Shuffle、流批一体的Hybrid Shuffle三大模式及其应用场景,并探讨了Flink与Apache Celeborn的整合、性能优化及长期发展路线图。通过Hybrid Shuffle等创新技术,Flink实现了资源调度灵活性与高性能的平衡,为流批一体化计算提供了强大支持。未来,社区将进一步优化Shuffle机制,提升系统智能化与易用性。
VideoMind:Chain-of-LoRA突破时间盲区让AI真正看懂长视频
VideoMind是一种新型视频语言代理,专为解决长视频时间定位理解挑战设计。它通过“Chain-of-LoRA”技术结合四个专业角色(Planner、Grounder、Verifier、Answerer)实现高效推理。Planner分析查询并制定计划;Grounder精确定位视频时刻;Verifier验证候选时刻准确性;Answerer生成最终答案。此架构在14个公共基准上表现出色,尤其在长视频定位任务中超越了现有模型,同时保持高内存效率。VideoMind推动了多模态AI的发展,提供了解决复杂视频理解问题的新方法。
Flink + Doris 实时湖仓解决方案
本文整理自SelectDB技术副总裁陈明雨在Flink Forward Asia 2024的分享,聚焦Apache Doris与湖仓一体解决方案。内容涵盖三部分:一是介绍Apache Doris,一款高性能实时分析数据库,支持多场景应用;二是基于Doris、Flink和Paimon的湖仓解决方案,解决批流融合与数据一致性挑战;三是Doris社区生态及云原生发展,包括存算分离架构与600多位贡献者的活跃社区。文章深入探讨了Doris在性能、易用性及场景支持上的优势,并展示了其在多维分析、日志分析和湖仓分析中的实际应用案例。
人工智能技术对未来就业的影响
人工智能大模型技术正在重塑全球就业市场,但其核心是"增强"而非"取代"人类工作。虽然AI在数据处理、模式识别等标准化任务上表现出色,但在创造力、情感交互和复杂决策等人类专属领域仍存在明显局限。各行业呈现差异化转型:IT领域人机协同编程成为常态,金融业基础分析岗位减少但复合型人才需求激增,医疗行业AI辅助诊断普及但治疗决策仍依赖医生,制造业工人转向技术管理,创意产业中人类聚焦高端设计。未来就业市场将形成人机协作新生态,要求个人培养创造力、情商等AI难以替代的核心能力,企业重构工作流程。AI时代将推动人类向更高价值的认知活动跃升,实现人机优势互补的协同发展。
新闻聚合项目:多源异构数据的采集与存储架构
本文探讨了新闻聚合项目中数据采集的技术挑战与解决方案,指出单纯依赖抓取技术存在局限性。通过代理IP、Cookie和User-Agent的精细设置,可有效提高采集策略;但多源异构数据的清洗与存储同样关键,需结合智能化算法处理语义差异。正反方围绕技术手段的有效性和局限性展开讨论,最终强调综合运用代理技术与智能数据处理的重要性。未来,随着机器学习和自然语言处理的发展,新闻聚合将实现更高效的热点捕捉与信息传播。附带的代码示例展示了如何从多个中文新闻网站抓取数据并统计热点关键词。
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
阿里云向量检索服务Milvus 2.5版本在全文检索、关键词匹配以及混合检索(Hybrid Search)方面实现了显著的增强,在多模态检索、RAG等多场景中检索结果能够兼顾召回率与精确性。本文将详细介绍如何利用 Milvus 2.5 版本实现这些功能,并阐述其在RAG 应用的 Retrieve 阶段的最佳实践。
Elasticsearch:使用阿里云 AI 服务进行向量化和重新排名
本文介绍了如何将阿里云 AI 功能与 Elasticsearch 集成,以提高语义搜索的相关性。
13个专题6万字详解,Hologres一体化实时湖仓实践手册
Hologres 3.0 全新升级为一体化实时湖仓平台,通过统一数据平台实现湖仓存储一体、多模式计算一体、分析服务一体、Data+Al 一体,发布全新 Dynamic Table、External Database、分时弹性、Query Queue、NL2SQL 等能力,实现一份数据、一份计算、一份服务,极大提高数据开发及应用效率。
搜款网VVIC商品列表数据接口(搜款网API系列)
搜款网(VVIC)是知名服装批发平台,开发者可通过API获取商品列表数据,用于市场调研、数据分析等。API请求通常为HTTP GET,需申请权限并提供API Key。响应数据为JSON格式,包含商品基本信息。Python示例代码展示了如何发送请求和处理响应。使用API时需确保合法合规,注意错误处理和性能优化。
当OCR遇见大语言模型:智能文本处理的进化之路
简介:本文探讨光学字符识别(OCR)技术与大语言模型(LLM)结合带来的革新。传统OCR在处理模糊文本、复杂排版时存在局限,而LLM的语义理解、结构解析和多模态处理能力恰好弥补这些不足。文中通过代码实例展示了两者融合在错误校正、文档解析、多语言处理、语义检索及流程革新上的五大优势,并以财务报表解析为例,说明了该技术组合在实际应用中的高效性。此外,文章也展望了未来的技术发展趋势,包括多模态架构、小样本学习和边缘计算部署等方向,预示着文本处理技术正迈向智能认知的新时代。(240字)
一个项目能长期活下去,靠的从来不是模型
AI项目成败关键不在模型强弱,而在于系统性生存能力:厘清责任边界、接纳不确定性、严控复杂度、建立止损机制、允许模型“不万能”、并在模型成功时保持克制。真正活久的项目,清醒、务实、敬畏现实。
从原理到实践:零代码也能搞定的PPO微调全攻略
本文深入浅出解析PPO(近端策略优化)算法——大模型对齐人类偏好的核心技术。通过“温和教练”比喻、四步原理拆解与实操指南,零基础也能理解其剪切机制、优势函数与稳定训练逻辑,并亲手微调出更懂你的AI。(239字)
你以为 PPO 很高级,其实它更像个“微调旋钮”
PPO在真实业务中日益重要,因其擅长行为对齐而非能力提升。本文从工程实践出发,解析PPO三大典型用法:风格对齐、降低幻觉、强化偏好决策,强调其作为“行为调节器”的定位,并提供可落地的训练流程与评估方法,助力模型输出更可靠、可控、符合业务需求。
RAG 只做文本已经不够了:多模态问答的工程化落地指南
本文深入探讨多模态RAG的工程落地挑战与实践方案,揭示为何仅处理文本已无法满足企业真实需求。从图像、表格等多模态数据的解析、语义对齐、检索融合到生成控制,系统梳理三层架构与四大关键步骤,助力构建真正可用的多模态问答系统。
【AI大模型面试宝典七】- 训练优化篇
【AI大模型面试宝典】详解知识蒸馏:从软标签、温度机制到特征对齐,涵盖KL散度、黑/白盒蒸馏策略与代码实现,拆解高频面试题,助你精准掌握大模型压缩核心考点,轻松应对技术追问,offer拿到手软!
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。