OCR文字识别技术总结(二)
总结: 以上第一部分介绍我国OCR发展历程,从过程中可以发现,我国的光学字符识别研究相对国外起步较晚,但是发展十分迅速。从早期简单的单体识别发展到多种字体混合排列的多体识别,从中文印刷材料的识别发展到中英文混排印刷材料的双语言识别, 目前各个系统都可以支持简、繁体汉字的识别,同时支持中, 英,韩等多国文字的识别系统,对于简单版面可以进行效的定量分析,同时汉字识别率已经可以达到98%以上,以下第二部分将从不同字体展开对OCR技术描述。
FFmpeg开发笔记(四十三)使用SRS开启SRT协议的视频直播服务
《FFmpeg开发实战》书中介绍了轻量级流媒体服务器MediaMTX,适合测试但不适用于生产环境。SRS是一款国产开源服务器,支持RTMP、SRT等协议,适合生产使用。要启用SRS的SRT推流,需配置`srt.conf`,开启SRT服务并配置端口。在确保FFmpeg集成libsrt后,拉流则使用类似但带有`m=request`的地址。在Windows上,同样需要集成libsrt的FFmpeg来使用ffplay拉流。SRS的日志确认了推拉流的成功。书中提供更深入的FFmpeg开发知识。
FFmpeg开发笔记(五十六)使用Media3的Exoplayer播放网络视频
ExoPlayer最初是为了解决Android早期MediaPlayer控件对网络视频兼容性差的问题而推出的。现在,Android官方已将其升级并纳入Jetpack的Media3库,使其成为音视频操作的统一引擎。新版ExoPlayer支持多种协议,解决了设备和系统碎片化问题,可在整个Android生态中一致运行。通过修改`build.gradle`文件、布局文件及Activity代码,并添加必要的权限,即可集成并使用ExoPlayer进行网络视频播放。具体步骤包括引入依赖库、配置播放界面、编写播放逻辑以及添加互联网访问权限。
SAM 2.1:Meta 开源的图像和视频分割,支持实时视频处理
SAM 2.1是由Meta(Facebook的母公司)推出的先进视觉分割模型,专为图像和视频处理设计。该模型基于Transformer架构和流式记忆设计,实现了实时视频处理,并引入了数据增强技术,提升了对视觉相似物体和小物体的识别能力。SAM 2.1的主要功能包括图像和视频分割、实时视频处理、用户交互式分割、多对象跟踪以及改进的遮挡处理能力。