智能语音交互

首页 标签 智能语音交互
# 智能语音交互 #
关注
2336内容
SpeechGPT 2.0:复旦大学开源端到端 AI 实时语音交互模型,实现 200ms 以内延迟的实时交互
SpeechGPT 2.0 是复旦大学 OpenMOSS 团队推出的端到端实时语音交互模型,具备拟人口语化表达、低延迟响应和多情感控制等功能。
基于开源技术的数字人实时对话:形象可自定义,支持语音输入,对话首包延迟可低至3s
魔搭社区最近上线了基于开源技术的数字人实时对话demo,无需预训练即可使用自定义的数字人形象进行实时对话,支持语音输入和实时对话。
生成完美口型同步的 AI 数字人视频
在当今数字媒体和人工智能技术的推动下,生成完美口型同步的AI数字人视频成为备受关注的研究领域。本研究旨在开发一种技术,能够实现生成完美口型同步的AI数字人视频,使虚拟人物的口型与语音内容完美匹配。采用了深度学习方法,结合了语音识别、面部运动生成和视频合成技术,以实现这一目标。通过语音识别模型将输入的文本转换为音频波形,利用面部运动生成模型根据音频波形生成对应的面部动作序列,这些动作序列可以准确地反映出发音的口型和面部表情,最后生成口型同步的AI数字人视频。这项技术具有广泛的应用前景,可用于虚拟主持人、教育视频、学习平台等领域,提升视频内容的真实感和沟通效果。
人工智能,应该如何测试?(五)ASR 效果测试介绍
ASR是自动语音识别技术,将语音转化为文本,涉及多学科知识。数据收集是关键,包括特定人/非特定人、词汇量大小、发音方式、方言和情感等多种类别,高质量数据成本高。ASR流程包括数据收集、标注、输入算法得到文本输出并评估。常用评估指标有字错率(WER)、字正确率及插入/删除/替换率。数据标注需严格遵循规范,工作量大,而Levenshtein库可用于自动化效果评测。在AI领域,大部分时间投入在数据处理上。
智能语音交互:AI如何重塑人际沟通###
【10月更文挑战第27天】 一句话 本文将探讨智能语音交互技术如何深刻改变我们的沟通方式,从简单的命令识别到复杂的情感理解和多模态互动,揭示其背后的技术原理与未来趋势。 ###
免费试用