阿里巴巴开源GNN框架Graph-Learn
项目地址:https://github.com/alibaba/graph-learn
阿里巴巴近期开源了面向图神经网络(GNN)的框架Graph-Learn(GL,原AliGraph)。框架由阿里内部团队研发,研发同学分别来自计算平台事业部-PAI团队,新零售智能引擎事业群-智能计算实验室,以及安全部-数据与算法团队。
DSW:面向AI研发的集成开发平台
DSW(Data Science Workshop)是阿里巴巴PAI团队根据多年的AI算法和产品研发经验积累,围绕提高AI算法研发效率,降低研发成本而推出的一款适用于各类AI开发者的云端机器学习集成开发环境。
基于EasyCV复现ViTDet:单层特征超越FPN
ViTDet其实是恺明团队MAE和ViT-based Mask R-CNN两个工作的延续。MAE提出了ViT的无监督训练方法,而ViT-based Mask R-CNN给出了用ViT作为backbone的Mask R-CNN的训练技巧,并证明了MAE预训练对下游检测任务的重要性。而ViTDet进一步改进了一些设计,证明了ViT作为backone的检测模型可以匹敌基于FPN的backbone(如SwinT和MViT)检测模型。
【AAAI 2024】MuLTI:高效视频与语言理解
多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。