Qwen2VL-Flux:开源的多模态图像生成模型,支持多种生成模式
Qwen2VL-Flux 是一个开源的多模态图像生成模型,结合了 Qwen2VL 的视觉语言理解和 FLUX 框架,能够基于文本提示和图像参考生成高质量的图像。该模型支持多种生成模式,包括变体生成、图像到图像转换、智能修复及 ControlNet 引导生成,具备深度估计和线条检测功能,提供灵活的注意力机制和高分辨率输出,是一站式的图像生成解决方案。
20用于深度学习训练和研究的数据集
无论是图像识别,自然语言处理,医疗保健还是任何其他人工智能领域感兴趣,这些数据集都是非常重要的,所以本文将整理常用且有效的20个数据集。
ACE:阿里通义实验室推出的全能图像生成和编辑模型
ACE是阿里巴巴通义实验室推出的全能图像生成和编辑模型,基于扩散变换器,支持多模态输入和多任务处理。该模型通过长上下文条件单元(LCU)和统一条件格式,能够理解和执行自然语言指令,实现图像生成、编辑和多轮交互等复杂任务,显著提升视觉内容创作的效率和灵活性。
SmolVLM:Hugging Face推出的轻量级视觉语言模型
SmolVLM是Hugging Face推出的轻量级视觉语言模型,专为设备端推理设计。以20亿参数量,实现了高效内存占用和快速处理速度。SmolVLM提供了三个版本以满足不同需求,并完全开源,所有模型检查点、VLM数据集、训练配方和工具均在Apache 2.0许可证下发布。