moonshot-v1-vision-preview:月之暗面Kimi推出多模态视觉理解模型,支持图像识别、OCR文字识别、数据提取

本文涉及的产品
图像搜索,7款服务类型 1个月
简介: moonshot-v1-vision-preview 是月之暗面推出的多模态图片理解模型,具备强大的图像识别、OCR文字识别和数据提取能力,支持API调用,适用于多种应用场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:支持图像识别、OCR文字识别、图像数据提取与分析。
  2. 技术:基于API调用,支持多轮对话、流式输出等特性。
  3. 应用:适用于内容审核、文档处理、医学影像分析、智能交互服务等场景。

正文(附运行示例)

moonshot-v1-vision-preview 是什么

moonshot-v1-vision-preview

moonshot-v1-vision-preview 是月之暗面推出的多模态图片理解模型,进一步完善了 moonshot-v1 模型系列的多模态能力。该模型具备强大的图像识别能力,能够精准区分复杂细节,如相似的蓝莓松饼和吉娃娃图片。在文字识别方面,模型表现优异,能够准确识别潦草手写内容,如收据单、快递单等。

此外,moonshot-v1-vision-preview 还能分析图像中的数据,如柱状图的科目成绩,并从美学角度评价图表。模型基于API调用,支持多轮对话、流式输出等特性,用户可以轻松将其集成到自己的应用中。

moonshot-v1-vision-preview 的主要功能

  • 图像识别:准确识别出图像中的复杂细节和细微差别,即使是相似度较高、人眼较难区分的对象,如蓝莓松饼和吉娃娃图片,模型也能精确地区分和识别。
  • OCR文字识别能力:在OCR文字识别和图像理解场景中表现突出,比普通的文件扫描和OCR识别软件更加准确。能识别收据单、快递单等文档中潦草的手写内容,准确提取文字信息。
  • 图像数据提取与分析:精准识别图像中的数据信息,如柱状图中的科目名称、分数数值等,进行数据对比分析。还能识别图像的样式格式、颜色等美学元素,从美学角度对图像进行评价。
  • API调用:基于API调用,用户能将模型集成到自己的应用中。

如何运行 moonshot-v1-vision-preview

1. 获取API密钥

首先,您需要在月之暗面平台上注册并获取API密钥。

2. 安装必要的库

使用以下命令安装所需的Python库:

pip install openai

3. 调用API

以下是一个简单的Python示例,展示如何调用moonshot-v1-vision-preview的API进行图像识别:

import os
import base64

from openai import OpenAI

client = OpenAI(
    api_key=os.environ.get("MOONSHOT_API_KEY"),
    base_url="https://api.moonshot.cn/v1",
)

# 在这里,你需要将 kimi.png 文件替换为你想让 Kimi 识别的图片的地址
image_path = "kimi.png"

with open(image_path, "rb") as f:
    image_data = f.read()

# 我们使用标准库 base64.b64encode 函数将图片编码成 base64 格式的 image_url
image_url = f"data:image/{os.path.splitext(image_path)[1]};base64,{base64.b64encode(image_data).decode('utf-8')}"


completion = client.chat.completions.create(
    model="moonshot-v1-8k-vision-preview",
    messages=[
        {
   "role": "system", "content": "你是 Kimi。"},
        {
   
            "role": "user",
            # 注意这里,content 由原来的 str 类型变更为一个 list,这个 list 中包含多个部分的内容,图片(image_url)是一个部分(part),
            # 文字(text)是一个部分(part)
            "content": [
                {
   
                    "type": "image_url", # <-- 使用 image_url 类型来上传图片,内容为使用 base64 编码过的图片内容
                    "image_url": {
   
                        "url": image_url,
                    },
                },
                {
   
                    "type": "text",
                    "text": "请描述图片的内容。", # <-- 使用 text 类型来提供文字指令,例如“描述图片内容”
                },
            ],
        },
    ],
)

print(completion.choices[0].message.content)

4. 运行示例

将上述代码保存为 moonshot_vision.py,然后在终端中运行:

python moonshot_vision.py

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
15天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171335 12
|
18天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150296 32
|
26天前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201962 14
对话 | ECS如何构筑企业上云的第一道安全防线
|
4天前
|
机器学习/深度学习 自然语言处理 PyTorch
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
|
8天前
|
存储 人工智能 安全
对话|无影如何助力企业构建办公安全防护体系
阿里云无影助力企业构建办公安全防护体系
1253 10
|
10天前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
|
8天前
|
人工智能 自然语言处理 程序员
通义灵码2.0全新升级,AI程序员全面开放使用
通义灵码2.0来了,成为全球首个同时上线JetBrains和VSCode的AI 程序员产品!立即下载更新最新插件使用。
1347 24
|
8天前
|
消息中间件 人工智能 运维
1月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
660 26
1月更文特别场——寻找用云高手,分享云&AI实践
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
|
14天前
|
人工智能 自然语言处理 API
阿里云百炼xWaytoAGI共学课DAY1 - 必须了解的企业级AI应用开发知识点
本课程旨在介绍阿里云百炼大模型平台的核心功能和应用场景,帮助开发者和技术小白快速上手,体验AI的强大能力,并探索企业级AI应用开发的可能性。

热门文章

最新文章