浅析GPU通信技术(下)-GPUDirect RDMA
目录
浅析GPU通信技术(上)-GPUDirect P2P
浅析GPU通信技术(中)-NVLink
浅析GPU通信技术(下)-GPUDirect RDMA
1. 背景
前两篇文章我们介绍的GPUDirect P2P和NVLink技术可以大大提升GPU服务器单机的GPU通信性...
机器学习工具、平台汇总
1. 平台和系统
TensorFlow — TensorFlow 是谷歌的第二代机器学习系统,内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用 TensorFlow
PaddlePaddle — 百度研发的深度学习平台,具有易用,高效,灵活和可伸缩等特点,为百度内部多项产品提供深度学习算法支持
Apache SINGA — SINGA 是基于大型数据集训练,大型深度学习模块的常规分布式学习平台。
浅析GPU通信技术(上)-GPUDirect P2P
1. 背景
GPU在高性能计算和深度学习加速中扮演着非常重要的角色, GPU的强大的并行计算能力,大大提升了运算性能。随着运算数据量的不断攀升,GPU间需要大量的交换数据,GPU通信性能成为了非常重要的指标。
淘宝Diamond架构分析
花了两天的时间研究了下Diamond,因为写得比较急,而且并没有使用过,只是单纯的做逆向建模,所以难免会有细节缺失,后面会时不时过来看看,然后做些补充。
背景知识
早期的应用都是单体的,配置修改后,只要通过预留的管理界面刷新reload即可。后来,应用开始拆分,从单一系统拆分成多个子系统,每个子系统还会对应多个运行实例,就开始面临一些问题:
1. 配置分散在多个业务
Apache Spark 3.0 将内置支持 GPU 调度
如今大数据和机器学习已经有了很大的结合,在机器学习里面,因为计算迭代的时间可能会很长,开发人员一般会选择使用 GPU、FPGA 或 TPU 来加速计算。在 Apache Hadoop 3.1 版本里面已经开始内置原生支持 GPU 和 FPGA 了。
企业数据创新之旅——高性能NAS助力业务上云
在2018年云栖大会·南京峰会的飞天技术汇专场中,阿里云产品专家王登宇带来了题为《企业数据创新之旅——高性能NAS助力业务上云》的精彩技术分享。在分享中,他首先介绍了企业上云面临的困难和阿里云存储之路;随后对NAS文件存储产品家族的技术架构和适用场景进行了分析;分享最后,他结合基因、视频、AI等具体客户对NAS助力业务上云进行了详细讲解。
Kubeflow 使用指南
Kubeflow(https://github.com/kubeflow)是基于Kubernetes(https://kubernets.io,容器编排与管理服务软件)和TensorFlow(https://tensorflow.org,深度学习库)的机器学习流程工具,使用Ksonnet进行应用包的管理。
从声学模型算法角度总结 2016 年语音识别的重大进步
免费开通大数据服务:https://www.aliyun.com/product/odps
在过去的一年中,语音识别再次取得非常大的突破。IBM、微软等多家机构相继推出了自己的 Deep CNN 模型,提升了语音识别的准确率;Residual/Highway 网络的提出使我们可以把神经网络训练的更加深。