云消息队列 Kafka 版

首页 标签 云消息队列 Kafka 版
利用Hadoop进行实时数据分析的挑战与解决方案
【8月更文第28天】随着大数据技术的快速发展,企业和组织面临着越来越复杂的实时数据处理需求。Hadoop 作为一种分布式存储和处理大数据的框架,虽然擅长于批处理任务,但在处理实时数据流时存在一定的局限性。为了克服这些限制,Hadoop 经常与其他实时处理框架(如 Apache Kafka 和 Apache Storm)结合使用。本文将探讨如何利用 Hadoop 结合 Kafka 和 Storm 实现近实时的数据处理,并提供相关的代码示例。
FeatHub:流批一体的实时特征工程平台
本次分享中,将介绍 FeatHub,一个由阿里云自研并开源的实时特征平台。我们将介绍 FeatHub 的架构设计,已经完成的工作,以及近期的发展计划。
实时数据同步与共享:使用Apache Kafka Connect
在现代应用程序开发中,实时数据同步和共享变得越来越重要。而Apache Kafka Connect作为一个可靠的、分布式的数据集成工具,为我们提供了一种简单而强大的方式来实现实时数据的传输和共享。
Apache Flink 零基础入门(一):基础概念解析
本文是根据 Apache Flink 基础篇系列直播整理而成,由 Apache Flink PMC 戴资力与阿里巴巴高级产品专家陈守元共同分享。Apache Flink 系列入门教程每周更新一期,持续推送。
深入解析 Kafka Exactly Once 语义设计 & 实现
本篇文章主要介绍 Kafka 如何在流计算场景下保证端到端的 Exactly Once 语义,通过其架构上的设计以及源码分析帮助读者理解背后的实现原理。什么是 Exactly-Once?消息的投递语义主要分为三种:At Most Once: 消息投递至多一次,可能会丢但不会出现重复。At Least Once: 消息投递至少一次,可能会出现重复但不会丢。Exactly Once: 消息投递正好一次
免费试用