HIVE

首页 标签 HIVE
# HIVE #
关注
5928内容
Hive 之 UDF 运用(包会的)
Hive的UDF允许用户自定义数据处理函数,扩展其功能。`reflect()`函数通过Java反射调用JDK中的方法,如静态或实例方法。例如,调用`MathUtils.addNumbers()`进行加法运算。要创建自定义UDF,可以继承`GenericUDF`,实现`initialize`、`evaluate`和`getDisplayString`方法。在`initialize`中检查参数类型,在`evaluate`中执行业务逻辑。最后,打包项目成JAR,上传到HDFS,并在Hive中注册以供使用。
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
快手 OLAP 系统为内外多个场景提供数据服务,每天承载近 10 亿的查询请求。原有湖仓分离架构,由离线数据湖和实时数仓组成,面临存储冗余、资源抢占、治理复杂、查询调优难等问题。通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。
MaxCompute SQL与Hive对比分析及使用注意事项
一个使用过Hadoop的Hive框架的大数据开发工程师,往往基本掌握了阿里云的大数据计算服务MaxCompute的90%。本次分享主要通过详细对比MaxCompute和Hive各个方面的异同及开发使用的注意事项,方便用户来开发使用MaxCompute,实现从Hive秒速迁移到MaxCompute。
Flink SQL 实战:双流 join 场景应用
大家都知道在使用 SQL 进行数据分析的过程中,join 是经常要使用的操作。在离线场景中,join 的数据集是有边界的,可以缓存数据有边界的数据集进行查询,有Nested Loop/Hash Join/Sort Merge Join 等多表 join;而在实时场景中,join 两侧的数据都是无边界的数据流,所以缓存数据集对长时间 job 来说,存储和查询压力很大。如何从容应对各种流式场景?
通过Java API获取Hive Metastore中的元数据信息
本文以Java API为例,介绍如何获取hive standalone metastore中的catalog、database、table等信息,通过该方式,我们可以方便地对元数据中心进行监控与管理。
10分钟搞懂 Data Fabric 和 Data Mesh 的区别!
聚焦比较容易混淆的Data Fabric和Data Mesh这两个概念,尝试说明这两个概念要解决的问题、架构特征以及可行的技术栈,距离成熟还有哪些不足,以及围绕两个技术领域跟我们做的大数据技术服务之间的关系。
大数据数据采集的数据迁移(同步/传输)的Sqoop之概念
在大数据领域,数据迁移(同步/传输)也是非常重要的一环。Sqoop作为一个开源的数据迁移工具,可以帮助我们轻松地实现关系型数据库与Hadoop之间的数据迁移。本文将会对Sqoop进行详细介绍。
免费试用