Caffe

首页 标签 Caffe
# Caffe #
关注
516内容
CNN与图像语义分割
级别1:DL快速上手 级别2:从Caffe着手实践 级别3:读paper,网络Train起来 级别4:Demo跑起来 读一些源码玩玩 熟悉Caffe接口,写Demo这是硬功夫 分析各层Layer输出特征 级别5:何不自己搭个CNN玩玩 Train CNN时关于数据集的一些注意事项 级别6:加速吧,GPU编程 关于语义分割的一些其它工作 说好的要笔耕不缀,这开始一边实习一边找工作,还摊上了自己的一点私事困扰,这几个月的东西都没来得及总结一下。
Caffe深度学习计算框架
Caffe | Deep Learning Framework是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 Yangqing Jia,目前在Google工作。Caffe是纯粹的C++/CUDA架构,支持命令行、Python和MATLAB接口;可以在CPU和GPU直接无缝切换: 1 Caffe::set_mode(Caffe::GPU); Caffe的优势 上手快:模型与相应优化都是以文本形式而非代码形式给出。
caffe: train error: Serializing 25 layers--- Check failed: proto.SerializeToOstream(&output)
I0221 21:47:41.826748  6797 solver.cpp:259]     Train net output #0: loss = 0.00413362 (* 1 = 0.00413362 loss)I0221 21:47:41.
【蜂口 | AI人工智能】搭建caffe依赖环境——龙鹏的一站式caffe工程实践连载(一)
大家好,我是龙鹏,现在在陌陌深度学习实验室担任资深高级算法工程师,之前在360人工智能研究院担任算法工程师,目前已具有六年的计算机视觉相关的项目经验了。这次的分享我会基于Caffe这个深度学习开源框架,给大家描述一个完整的图像分割项目,大家会对图像分割技术中的基本原理有所了解,并且能够掌握Caffe这个深度学习框架,从而提高自己的应用实战水平。
利用pytorch实现神经网络风格迁移Neural Transfer
风格迁移 Neural Transfer 风格迁移,即获取两个图片(一张内容图片content-image、一张风格图片style-image),从而生成一张新的拥有style-image图像风格的内容图像。
免费试用