Caffe

首页 标签 Caffe
# Caffe #
关注
516内容
深度学习论文阅读目标检测篇(一):R-CNN《Rich feature hierarchies for accurate object detection and semantic...》
 过去几年,在经典数据集PASCAL上,物体检测的效果已经达到 一个稳定水平。效果最好的方法是融合了多种低维图像特征和高维上 下文环境的复杂集成系统。在这篇论文里,我们提出了一种简单并且 可扩展的检测算法,可以在VOC2012最好结果的基础上将mAP值提 高30%以上——达到了53.3%。
深度学习论文阅读目标检测篇(二):Fast R-CNN《Fast R-CNN》
本文提出了一种快速的基于区域的卷积网络方法(fast R-CNN) 用于目标检测。Fast R-CNN 建立在以前使用的深卷积网络有效地分 类目标的成果上。相比于之前的研究工作,Fast R-CNN 采用了多项创 新提高了训练和测试速度,同时也提高了检测准确度。
ArXiv最受欢迎开源深度学习框架榜单:TensorFlow第一,PyTorch第四
Kears作者François Chollet刚刚在Twitter贴出最近三个月在arXiv提到的深度学习框架,TensorFlow不出意外排名第一,Keras排名第二。随后是Caffe、PyTorch和Theano,再次是MXNet、Chainer和CNTK。
通过阿里云容器服务深度学习解决方案上手Caffe+多GPU训练
阿里云容器服务提供的深度学习解决方案内置了对Tensorflow, Keras, MXnet框架的环境,并支持基于它们的深度学习模型开发、模型训练和模型预测。同时,对于模型训练和预测,用户还可以通过指定自定义容器镜像的方式,使用其他深度学习框架。
免费试用