AI框架跟计算图什么关系?PyTorch如何表达计算图?
目前主流的深度学习框架都选择使用计算图来抽象神经网络计算表达,通过通用的数据结构(张量)来理解、表达和执行神经网络模型,通过计算图可以把 AI 系统化的问题形象地表示出来。
本节将会以AI概念落地的时候,遇到的一些问题与挑战,因此引出了计算图的概念来对神经网络模型进行统一抽象。接着展开什么是计算,计算图的基本构成来深入了解诶计算图。最后简单地学习PyTorch如何表达计算图。
GraphScope 的图计算之旅
GraphScope的图计算之旅由阿里巴巴通义实验室系统研发总监徐静波分享,涵盖三个发展阶段。早期方案针对特定任务设计了多个图计算系统;2018年起整合为一站式系统GraphScope,支持图遍历、图分析和图学习;2024年演进至GraphScope Flex,采用模块化设计应对多样化的图计算需求。GraphScope持续优化性能并建设开源社区,现已支持3000多个star和100多种算法,日均处理五万多个图计算任务。未来将探索更多查询语言、存储支持及HTAP能力。
Java与图神经网络:构建企业级知识图谱与智能推理系统
图神经网络(GNN)作为处理非欧几里得数据的前沿技术,正成为企业知识管理和智能推理的核心引擎。本文深入探讨如何在Java生态中构建基于GNN的知识图谱系统,涵盖从图数据建模、GNN模型集成、分布式图计算到实时推理的全流程。通过具体的代码实现和架构设计,展示如何将先进的图神经网络技术融入传统Java企业应用,为构建下一代智能决策系统提供完整解决方案。