图计算

首页 标签 图计算
# 图计算 #
关注
633内容
深入解读TuGraph计算引擎模型推理系统
TuGraph计算引擎模型推理系统将基于迭代计算的图计算框架与模型推理系统相结合,推理系统可自定义推理依赖环境,图迭代计算与推理链路实现隔离。基于共享内存的跨进程通信方式,提高了推理数据交换效率,满足流图近线推理的时效性。
【YOLOv8改进 - 注意力机制】 CascadedGroupAttention:级联组注意力,增强视觉Transformer中多头自注意力机制的效率和有效性
YOLO目标检测专栏探讨了Transformer在视觉任务中的效能与计算成本问题,提出EfficientViT,一种兼顾速度和准确性的模型。EfficientViT通过创新的Cascaded Group Attention(CGA)模块减少冗余,提高多样性,节省计算资源。在保持高精度的同时,与MobileNetV3-Large相比,EfficientViT在速度上有显著提升。论文和代码已公开。CGA通过特征分割和级联头部增加注意力多样性和模型容量,降低了计算负担。核心代码展示了CGA模块的实现。
Intellij idea配置Spark开发环境,统计哈姆雷特词频(2)
idea 新建maven 项目 输入maven坐标 maven 坐标 编辑maven文件 Spark 体系 中间层Spark,即核心模块Spark Core,必须在maven中引用。
金融数据智能在蚂蚁金服的现状与发展
摘要:随着金融行业越来越复杂的融合场景和海量数据的出现,新一代数据技术架构和金融计算核心引擎呼之欲出。在2019杭州云栖大会开发者峰会上,蚂蚁金服计算存储首席架构师萧河就为大家分享了金融数据智能在蚂蚁金服的现状与发展。
从310到蚂蚁森林,蚂蚁金服在线图计算的创新与实践
在线图计算就是将流式计算与图计算结合起来,能做到进行实时的图计算的技术。蚂蚁金服在这个方向上经过多年研发,在关键技术上做出了突破性的创建,并形成了面向金融场景的解决方案。
图神经网络(AliGraph)在阿里巴巴的发展与应用
在大数据的背景下,利用高速计算机去发现数据中的规律似乎是最有效的手段。为了让机器计算的有目的性,需要将人的知识作为输入。我们先后经历了专家系统、经典机器学习、深度学习三个阶段,输入的知识由具体到抽象,由具体规则到特征再到模式,越来越宏观。相对来说,抽象的层次变高了,覆盖面变广了,但我们对底层的感知变弱了,模型的可解释程度变差了。事物发展往往遵循这样的规律,先有客观事实,再有原理支撑,之后是普遍推广。深度学习的应用已经让我们看到了非常可观的价值,但其背后的可解释性工作进展缓慢,也因为如此,当我们用深度学习去解决一些风控、安全等业务场景,那数字效果不足以支撑这项技术的应用,我们更需要知道结果后面的
深度总结 | 机器智能的安全之困
小叽导读:机器智能的核心本质与基本范式到底是什么?机器智能给各个行业都带来创新变革的同时,为什么在网络安全行业的表现却一直差强人意?到底什么才是真正意义上的智能安全系统?本文希望能给整个安全行业带来一点不一样的启发,也期望能促进机器智能+网络安全这个交叉领域往正确的方向发展。
免费试用