《从Excel到Python——数据分析进阶指南》一导读
Excel是数据分析中最常用的工具,本书通过Python与Excel的功能对比介绍如何使用Python通过函数式编程完成Excel中的数据处理及分析工作。在Python中pandas库用于数据处理,我们从1787页的pandas官网文档中总结出最常用的36个函数,通过这些函数介绍如何通过Python完成数据生成和导入、数据清洗、预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作。
Python爬虫:用BeautifulSoup进行NBA数据爬取
爬虫主要就是要过滤掉网页中无用的信息,抓取网页中有用的信息
一般的爬虫架构为:
在python爬虫之前先要对网页的结构知识有一定的了解,如网页的标签,网页的语言等知识,推荐去W3School: W3school链接进行了解
在进行爬虫之前还要有一些工具:
1.首先Python 的开发环境:这里我选择了python2.7,开发的IDE为了安装调试方便选择了用VS2013
广东联合电服自由流收费稽核方案案例
基于阿里云强大的云计算底座和业界领先的大数据及人工智能的能力,助力高速公路由传统模式向云端一体化模式转型,实现不停车自由通行、业务管理的实时审计、对大量车辆交通记录和应收费率的实时准确核算,让每辆车的每个行程每笔费用都不遗漏。