决策智能

首页 标签 决策智能
# 决策智能 #
关注
2466内容
谷歌开源多智能体开发框架 Agent Development Kit:百行代码构建复杂AI代理,覆盖整个开发周期!
谷歌开源的Agent Development Kit(ADK)是首个代码优先的Python工具包,通过多智能体架构和灵活编排系统,支持开发者在百行代码内构建复杂AI代理,提供预置工具库与动态工作流定义能力。
面向多模态感知与反思的智能体架构Agentic AI的实践路径与挑战
Agentic AI(能动智能体)代表人工智能从被动响应向主动规划、自主决策的范式转变。本文系统解析其核心架构,涵盖感知、记忆、意图识别、决策与执行五大模块,并探讨多智能体协作机制与通信协议设计。结合代码示例,展示意图识别、任务规划与异步执行的实现方式,分析该架构的优势与挑战,如高自主性与通信复杂性等问题。最后展望未来方向,包括引入RAG、LoRA与多模态感知等技术,推动Agentic AI在自动编程、机器人协作等场景的广泛应用。
|
11月前
|
随机的暴力美学蒙特卡洛方法 | python小知识
蒙特卡洛方法是一种基于随机采样的计算算法,广泛应用于物理学、金融、工程等领域。它通过重复随机采样来解决复杂问题,尤其适用于难以用解析方法求解的情况。该方法起源于二战期间的曼哈顿计划,由斯坦尼斯拉夫·乌拉姆等人提出。核心思想是通过大量随机样本来近似真实结果,如估算π值的经典示例。蒙特卡洛树搜索(MCTS)是其高级应用,常用于游戏AI和决策优化。Python中可通过简单代码实现蒙特卡洛方法,展示其在文本生成等领域的潜力。随着计算能力提升,蒙特卡洛方法的应用范围不断扩大,成为处理不确定性和复杂系统的重要工具。
|
4月前
| |
超越单智能体!原生多Agent系统开发指南(附完整源码)
本文深入探讨多智能体系统的核心原理与工程实践,解析其模块化、错误隔离与解释性优势,并通过实战示例展示如何构建多智能体新闻生成器,助力AI协作应用开发。
|
5月前
|
智能体决策机制深度剖析:ReAct、Plan-and-Execute与自适应策略
作为一名深耕人工智能领域多年的技术研究者,我深深感受到智能体(Agent)技术正在成为AI发展的关键转折点。从早期基于规则的专家系统,到如今融合大语言模型的智能代理,我们见证了决策机制从简单条件判断向复杂推理规划的演进历程。 在我的研究实践中,智能体决策机制的核心挑战始终围绕着如何在动态环境中做出最优决策。传统的决策树和状态机虽然逻辑清晰,但面对复杂多变的现实场景时显得力不从心。而随着GPT-4、Claude等大语言模型的兴起,我们迎来了前所未有的机遇——通过自然语言推理和规划,智能体可以展现出接近人类水平的决策能力。 当前主流的决策框架中,ReAct(Reasoning and Acting
|
3月前
| |
AI智能体框架怎么选?7个主流工具详细对比解析
大语言模型需借助AI智能体实现“理解”到“行动”的跨越。本文解析主流智能体框架,从RelevanceAI、smolagents到LangGraph,涵盖技术门槛、任务复杂度、社区生态等选型关键因素,助你根据项目需求选择最合适的开发工具,构建高效、可扩展的智能系统。
免费试用