震惊!多角色 Agent 携手合作,竟能如此高效搞定复杂任务,背后秘密大揭晓!
在复杂任务环境中,单个智能体常因能力与资源限制而难以应对。多智能体系统(multi-agent systems)通过将任务分解并分配给各具专长的智能体,实现了高效协同工作。例如,在物流配送中,不同智能体分别处理路线规划、货物装载与交通监控,确保任务准确高效完成。同样,在大型游戏开发项目里,各智能体专注剧情设计、美术创作等特定领域,显著提升项目质量和开发速度。通过共享信息、协商决策等方式,多智能体系统展现出强大灵活性与适应性,为物流、软件开发等领域带来新机遇。
2024.11|全球具身智能的端到端AI和具身Agent技术发展到哪里了
2024年,具身智能领域取得显著进展,特别是在端到端AI控制系统和多模态感知技术方面。这些技术不仅推动了学术研究的深入,也为科技公司在实际应用中带来了突破。文章详细介绍了端到端AI的演化、自监督学习的应用、多模态感知技术的突破、基于强化学习的策略优化、模拟环境与现实环境的迁移学习、长程任务规划与任务分解、人机协作与社会交互能力,以及伦理与安全问题。未来几年,具身智能将在多模态感知、自监督学习、任务规划和人机协作等方面继续取得重要突破。
玩转智能体魔方!清华推出AgentSquare模块化搜索框架,开启AI智能体高速进化时代
清华大学研究团队提出模块化LLM智能体搜索(MoLAS)框架AgentSquare,将LLM智能体设计抽象为规划、推理、工具使用和记忆四大模块,实现模块间的轻松组合与替换。通过模块进化和重组机制,AgentSquare显著提升了智能体的适应性和灵活性,并在多个基准测试中表现出色,平均性能提高17.2%。此外,该框架还具备可解释性,有助于深入理解智能体架构对任务性能的影响。论文地址:https://arxiv.org/abs/2410.06153