《揭秘AI语音助手:从“听”到“说”的智能之旅》
在数字化时代,AI语音助手如Siri、Alexa、小爱同学等成为生活中的得力伙伴。它们通过自动语音识别(ASR)将语音转换为文本,利用自然语言处理(NLP)理解语义并生成回应,再通过文本到语音转换(TTS)输出自然语音。ASR捕捉、预处理和分析语音信号;NLP解析文本、理解意图;TTS合成流畅语音。这三项技术协同工作,使语音助手能听懂、理解并回应用户,为人机交互带来便利与创新。
天猫精灵如何和我们聊天?
天猫精灵已经走过几年的历史,在这几年中,天猫精灵变得更加智能,其中的体现之一是交互方式变得越来越自然。本文将介绍天猫精灵的全双工自然对话交互方式。
智能语音识别技术的现状与未来发展趋势####
本文旨在探讨智能语音识别技术的发展历程、当前主要技术特点、面临的挑战以及未来的发展趋势。通过综述该领域的最新研究进展和应用实例,本文为读者提供了一个关于智能语音识别技术的全面概览,并展望了其在未来可能的发展方向。
####
人机融合智能 | “人智交互”跨学科新领域
本文围绕“以人为中心AI(HCAI)”理念,提出人-人工智能交互(人智交互)这一跨学科领域及框架。文章定义了人智交互的基本理论、关键问题与方法,并探讨其开发流程和团队协作模式,强调该领域的研究意义。文中分析了智能时代人机交互的新特征,提出“人智组队”的新型人机关系,指出智能系统可作为“辅助工具+合作队友”存在。同时,文章通过对比AI学科与人因科学的优势与不足,阐明跨学科合作的必要性,为未来人智交互研究提供方向。本章旨在为后续内容构建基于HCAI理念的研究与应用框架。
人机融合智能 | 脑机接口和脑机融合
脑机接口是一种在大脑与外部设备间建立直接信息交流的技术,能实现意念控制设备或对大脑进行调控。脑机融合则进一步将生物脑与机器智能结合,推动人机协同交互。本文介绍了脑机接口的技术框架、信号采集与解码方法,并探讨其在医疗康复、人机交互等领域的应用前景及挑战。
OCR文字识别技术总结(二)
总结: 以上第一部分介绍我国OCR发展历程,从过程中可以发现,我国的光学字符识别研究相对国外起步较晚,但是发展十分迅速。从早期简单的单体识别发展到多种字体混合排列的多体识别,从中文印刷材料的识别发展到中英文混排印刷材料的双语言识别, 目前各个系统都可以支持简、繁体汉字的识别,同时支持中, 英,韩等多国文字的识别系统,对于简单版面可以进行效的定量分析,同时汉字识别率已经可以达到98%以上,以下第二部分将从不同字体展开对OCR技术描述。
销售利器大集结:13种智能销售工具全面解析
该文探讨了人工智能在销售领域的应用,测试了13款领先工具,如Zoho CRM、Email Subject Line Generator和ChatGPT Plus等,这些工具通过数据分析、自动化任务和智能交互提升销售效率。然而,使用AI也带来人机交互和数据安全的挑战。文章强调,结合人工智能和人类销售人员的优势是关键,同时应谨慎处理相关问题。