自然语言处理

首页 标签 自然语言处理
# 自然语言处理 #
关注
28866内容
|
10月前
|
微软Copilot官网入口- Copilot中文版国内使用入口
微软Copilot应运而生,它不仅仅是一款软件,更像是一位人工智能副驾驶,旨在通过强大的AI技术,解放你的双手
|
1月前
| |
AgentScope1.0 上新!
AgentScope 1.0 新版本上线!新增开源智能体Alias-Agent与Data-Juicer Agent,支持任务规划、多智能体协同及自然语言驱动数据处理。升级核心能力,支持Agentic RL训练、长期记忆管理,并推出AgentScope-Samples案例集与强化版运行时环境,支持Docker、K8s等部署方式,助力智能体开发与应用落地。
干货 | BAT等一线大厂 Elasticsearch面试题解读
git上发现了网友总结的Elasticsearch BAT大厂面试题。只有题目,部分有答案,但不全。 正好抽出一些时间一起梳理一下。既然是面试题,每个人都会有自己的结合业务场景的答案,没有非常标准的答案。欢迎大家留言拍砖指正。
深入浅出 AI 智能体(AI Agent)|技术干货
随着人工智能技术的发展,智能体(AI Agents)逐渐成为人与大模型交互的主要方式。智能体能执行任务、解决问题,并提供个性化服务。其关键组成部分包括规划、记忆和工具使用,使交互更加高效、自然。智能体的应用涵盖专业领域问答、资讯整理、角色扮演等场景,极大地提升了用户体验与工作效率。借助智能体开发平台,用户可以轻松打造定制化AI应用,推动AI技术在各领域的广泛应用与深度融合。
Spring AI,Spring团队开发的新组件,Java工程师快来一起体验吧
文章介绍了Spring AI,这是Spring团队开发的新组件,旨在为Java开发者提供易于集成的人工智能API,包括机器学习、自然语言处理和图像识别等功能,并通过实际代码示例展示了如何快速集成和使用这些AI技术。
Agent与大模型的区别
本文详细对比了人工智能领域的两个重要概念——Agent和大模型。大模型如GPT-3、BERT等,擅长自然语言处理任务,如文本生成、翻译等;Agent则是自主的软件实体,能够在特定环境中感知、决策并执行任务,如管理日程、控制智能家居等。文章介绍了它们的定义、功能、技术架构及应用场景,并总结了两者的核心差异和未来发展方向。
|
11天前
|
TypeWords:让英语学习更高效的打字练习神器
TypeWords是一款开源英语学习工具,将打字与背单词、文章背诵结合,通过智能记忆曲线和多种练习模式,让英语学习更高效有趣。支持在线使用或本地部署,已获5.9k GitHub星标。
|
4月前
| |
深度解析智能体工作流(Agentic Workflows):核心概念、模式与应用
本文系统解析智能体工作流(Agentic Workflow),结合AI智能体的推理、工具与记忆能力,实现复杂任务的动态执行。内容涵盖核心概念、关键模式及实际应用,帮助读者全面理解其价值与挑战。
免费试用