语音技术

首页 标签 语音技术
# 语音技术 #
关注
6703内容
阿里巴巴高杰:3年风雨路,阿里巴巴自然语音交互的探索与经验教训
随着语音交互、自然语言处理、多模态等技术的发展,人机交互方式已经变得越来越简单,目前人机交互已经成为行业最热的研究方向之一。那么,未来人机交互的发展趋势什么呢?阿里巴巴智能语音交互专家高杰在《云栖大讲堂第三期|未来人机交互技术沙龙》上为大家分享了在阿里巴巴智能个人助理构建过程中所积累的经验和教训。
INTERSPEECH 2017系列 | 语音合成技术
编者:今年的INTERSPEECH于8月20日至24日在瑞典的斯德哥尔摩顺利召开,众多的高校研究机构和著名的公司纷纷在本次会议上介绍了各自最新的技术、系统和相关产品,而阿里巴巴集团作为钻石赞助商也派出了强大的阵容前往现场。
论文导读:面向卷积神经网络的卷积核冗余消除策略
本篇论文针对卷积神经网络在训练阶段所需的大量存储与计算资源,提出了一种改进的冗余卷积核消除策略,精简每个卷积层中冗余的卷积核,进而降低模型训练开销,使模型训练过程从云端转移至本地成为可能。
语音合成在语音助手中的应用及扩展
语音合成作为人机交互中必不可少的一个环节,随着计算机的运算和存储能力的迅猛发展,语音合成技术由早期的基于规则的参数合成,到基于小样本的拼接调整合成,并逐渐发展为现在比较流行的基于大语料库的拼接合成。
【资源】用深度学习解决自然语言处理中的7大问题,文本分类、语言建模、机器翻译等
本文讲的是用深度学习解决自然语言处理中的7大问题,文本分类、语言建模、机器翻译等,自然语言处理领域正在从统计学方法转向神经网络方法。在自然语言中,仍然存在许多具有挑战性的问题。但是,深度学习方法在某些特定的语言问题上取得了state-of-the-art的结果。
kaldi 源码分析(七) - HCLG 分析
Kaldi 语音识别主流程: 语音识别过程 解码网络使用 HCLG.fst 的方式, 它由 4 个 fst 经过一系列算法组合而成。分别是 H.fst、C.fst、L.fst 和 G.fst 4 个 fst 文件: 1. G:语言模型,输入输出类型相同,实际是一个WFSA(acceptor接受机),为了方便与其它三个WFST进行操作,将其视为一个输入输出相同的WFST。
INTERSPEECH 2017系列 | 语音识别技术之自适应技术
语音识别中的自适应,即针对某一个说话人或者某一domain来优化语音识别系统的识别性能,使得识别系统对他们的性能有一定的提升。本文章主要分享INTERSPEECH2017的自适应技术的最新进展。
免费试用