自动驾驶

首页 标签 自动驾驶
# 自动驾驶 #
关注
6341内容
|
10月前
|
《打破壁垒:卷积神经网络与循环神经网络的融合新篇》
在人工智能发展中,处理复杂时序图像/视频数据是难题。CNN擅长提取图像空间特征(如物体形状、位置),RNN/LSTM则善于捕捉时间依赖关系,解决长序列数据的梯度问题。两者结合,先用CNN提取每帧图像特征,再通过RNN/LSTM分析时间变化,可高效处理视频动作识别、自动驾驶等任务,融合空间与时序优势,展现巨大应用潜力。
|
10月前
|
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
10月前
|
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
|
10月前
|
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
10月前
|
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
|
10月前
|
《5G赋能:朴素贝叶斯算法的实时进化与场景拓展》
5G技术以其高速率、低时延、大连接特性,推动各行业变革。在实时数据处理方面,5G为朴素贝叶斯算法插上翅膀,大幅提升数据传输速度和实时性,保障决策响应即时化,并支持大规模多维度数据处理。5G助力下,该算法在智能交通、远程医疗、工业互联网等领域展现全新活力,实现更精准的分析与预测,为社会发展带来创新与便利。
|
11月前
|
《深度剖析:Q-learning为何被归为无模型强化学习算法》
Q-learning是无模型的强化学习算法,不依赖环境模型,而是通过与环境实时交互学习最优策略。它通过更新状态-动作值函数(Q函数)来评估行动价值,适用于多变环境,具有灵活性和简单性优势。然而,Q-learning探索效率较低,样本复杂性高,需大量尝试才能找到有效策略。这种特性使其在实际应用中既有机会也有挑战。
|
11月前
|
《探秘Q-learning:解锁其背后的基本假设》
Q-learning是强化学习领域的重要算法,广泛应用于机器人控制、游戏策略和资源管理等场景。它基于马尔可夫决策过程假设,认为未来状态仅依赖当前状态和动作,简化了问题复杂度。此外,Q-learning还假设奖励可量化、环境具有重复性、学习时间无限及动作离散,这些假设为智能体提供了明确的学习目标和机制,使其能高效地探索最优策略。尽管现实情况未必完全符合这些假设,Q-learning及其变种算法已在多个领域取得了显著成功。
|
11月前
|
《一文读懂!Q-learning状态-动作值函数的直观理解》
Q-learning算法是强化学习领域的核心,广泛应用于机器人控制、游戏AI和自动驾驶等领域。其关键在于理解状态-动作值函数(Q值),即智能体在特定状态下采取某动作的长期价值评估。通过不断与环境交互,智能体根据奖励信号更新Q值,逐步优化行为策略,最终实现累积奖励最大化。掌握Q值计算及其更新机制,是深入理解强化学习的基础,也是设计高效AI系统的关键。
免费试用