阿里达摩院MindOpt优化求解器-月刊(2024年2月)
新增2个整数规划的应用案例《人员排班:小美的春节相亲大计划》和《组合优化问题:装箱问题》。B站的视频专题已有9篇讲解如何用数学规划去解决生活和工作中的问题,包含如何建立数学模型、编代码、运行代码和结果理解。使用了达摩院 MindOpt 的建模语言和云平台,可复制项目跟随视频练习。还可参与活动领奖品!
一次中稿10篇EMNLP22,达摩院对话智能团队在研究什么
达摩院Conversational AI团队在EMNLP 2022上发表了10篇论文,涵盖了任务型对话、表格型对话、文档型对话、多模态对话和对话终身学习等多个前沿方向。团队构建了首个大规模中文任务型对话评估数据集CGoDial,用于提升对话系统的真实世界表现,并提出了一种新的预训练模型STAR,增强模型对复杂和抽象信息查询的处理能力。此外,他们还研究了多模态情感分析和对话情绪识别,以及终身学习对话系统的解决方案,以减少灾难性遗忘问题。这些研究旨在推动对话智能的发展,提高人机交互的效率和准确性。
如何选择旅游路线,使得假期旅游路费最少?
旅行是许多人的热爱,但是在规划一个完美的假期时,找到最经济的路线常常是一个挑战。这里就需要引入一个著名的优化问题——旅行商问题。本文将介绍TSP的基础知识,并使用MTZ消除子环方法优化一个简单的TSP问题的示例。
如何通过阿里达摩院MindOpt获得MILP多个解
在2024年1月达摩院新发布的MindOpt 优化求解器V1.1.0版本中,新增加了一个"MIP/SolutionNumber"参数,可以用于获取MILP多个解。有些业务里,会想要找到更多的可行解,目标值不一定最优,用于给业务指导。本篇案例将讲解如何使用此功能。