DeepSeek模型部署全过程实践,轻松上手就在阿里云
随着人工智能技术的不断发展,越来越多的企业和个人开始探索如何利用深度学习模型来提升业务效率和用户体验。阿里云推出的【零门槛、轻松部署您的专属 DeepSeek 模型】解决方案为用户提供了多种便捷的部署方式,包括**基于百炼 API 调用满血版、基于人工智能平台 PAl 部署、基于函数计算部署以及基于 GPU 云服务器部署**。本文将从多个维度对这些部署方式进行详细评测,并分享个人的实际体验和观点。
《解锁AI芯片新境界:提升专用人工智能芯片通用性与灵活性的热点技术》
在人工智能快速发展的背景下,专用AI芯片虽在特定任务上表现出色,但提升其通用性和灵活性成为关键。热点技术包括:可重构架构(如FPGA),支持动态调整硬件结构;混合精度计算,根据任务需求调整计算精度;多模态处理,融合视觉、语音等数据;软件定义硬件,通过编程实现功能灵活配置;硬件虚拟化,将物理资源虚拟化为多个独立逻辑单元;异构集成,结合CPU、GPU、NPU等单元协同工作。这些技术共同推动AI芯片的广泛应用和性能提升。
阿里云与麒麟软件签署全面合作协议
近日,麒麟软件与阿里云签署全面合作协议。双方明确建立长期、稳定的战略合作伙伴关系,在操作系统+人工智能领域展开深度合作,共同推动信息产业技术高速发展。
DeepSeek-R1论文细节时间线梳理
中国AI初创公司DeepSeek发布了大语言模型R1,该模型在推理任务上媲美OpenAI的ChatGPT,且训练成本仅600万美元。DeepSeek由杭州对冲基金High-Flyer支持,总部位于杭州和北京。R1基于V3-Base,使用监督微调和强化学习训练,针对硬件限制进行了优化。模型在多语言处理、推理风格等方面表现出色,但存在一些局限性,如法语表现欠佳、偶尔切换语言等。DeepSeek的创新技术包括FP8量化、多头潜在注意力和蒸馏方法,引发了广泛关注和讨论。开源社区正积极尝试复现其结果,但面临训练数据和代码未公开的挑战。DeepSeek的低成本高效训练策略为AI领域带来了新的思考方向。
Java工程师如何理解张量?
刚接触AI和PyTorch,理解“张量(Tensor)”是入门关键。张量可类比为Java中的多维数组,但更强大,尤其在AI领域支持GPU加速、自动求导等特性。它不仅能高效存储数据,还能进行复杂运算,是深度学习的核心数据结构。掌握张量的维度、数据类型及GPU加速特性,对学习PyTorch至关重要。