RDS AI助手深度测评-场景4:CPU压测指引
阿里云数据库RDS「RDS AI助手」正式上线啦!用聊天的方式,帮你搞定 信息查询、问题诊断、慢SQL优化、实例巡检 等一系列数据库运维任务,更能随你调遣,定制最贴近你业务的个性化Agent!现在免费公测中,欢迎留下您的诉求:https://survey.aliyun.com/apps/zhiliao/m3RVhe0m4
知识图谱与大模型:谁将引领未来发展?
本文对比了知识图谱与大模型的技术优劣。知识图谱逻辑清晰、可解释性强但构建繁琐;大模型灵活高效却存在黑盒与幻觉风险。实际工作中,二者并非对立,推荐采用RAG等融合架构,用图谱提供可靠支撑,用大模型快速生成,以兼顾系统可靠性与迭代效率。
知识图谱和大模型哪个才是大方向?
面对高并发与复杂业务,知识图谱与大模型如何选择?本文从架构、性能与落地场景出发,剖析两者优劣:知识图谱可解释性强但维护成本高,大模型灵活高效却存在幻觉风险。推荐融合策略——以图谱为“锚”保障可靠性,以大模型为“浪”提升灵活性,通过RAG、知识增强等方案实现互补,助力系统设计在速度与稳定间取得平衡。
用Coze搭建四阶工作流:AI赋能测试全链路提效实战
在现代软件开发中,测试常成瓶颈。本文介绍如何利用Coze平台,结合大语言模型,打造“测试提效大师”AI助手,构建覆盖需求解析、用例设计、执行辅助与缺陷管理的四阶智能工作流。通过可视化流程、知识库集成与系统联动,实现测试全链路提效,助力测试工程师从执行者迈向策略师。
实战Playwright MCP项目:利用提示进行浏览器测试与代码生成
本文介绍如何结合Playwright与MCP协议实现自然语言驱动的UI自动化测试。通过配置环境,用户可用简单指令替代传统脚本编写,完成从登录验证到报告生成的完整流程。文章详细解析了快照生成、智能体决策等核心技术,并探讨了从交互测试到代码生成的混合工作流方案,为降低测试门槛提供了新思路。