用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
在大数据环境中,数据存储格式直接影响查询性能和成本。本文探讨了 Parquet、Avro 和 ORC 三种格式在 Google Cloud Platform (GCP) 上的表现。Parquet 和 ORC 作为列式存储格式,在压缩和读取效率方面表现优异,尤其适合分析工作负载;Avro 则适用于需要快速写入和架构演化的场景。通过对不同查询类型(如 SELECT、过滤、聚合和联接)的基准测试,本文提供了在各种使用案例中选择最优存储格式的建议。研究结果显示,Parquet 和 ORC 在读取密集型任务中更高效,而 Avro 更适合写入密集型任务。正确选择存储格式有助于显著降低成本并提升查询性能。
使用 Jenkinsfile 实现流水线即代码 (Pipeline as Code)
【8月更文第31天】在现代软件开发实践中,持续集成(CI)和持续部署(CD)已经成为不可或缺的一部分。Jenkins 是一个非常流行的 CI/CD 工具,它支持多种方式来定义构建流程,其中“流水线即代码”(Pipeline as Code)是一种将构建逻辑版本化并纳入源代码管理的方法。这种方式不仅使得构建流程更加透明,也方便团队协作和版本控制。
基于Hadoop的大数据可视化方法
【8月更文第28天】在大数据时代,有效地处理和分析海量数据对于企业来说至关重要。Hadoop作为一个强大的分布式数据处理框架,能够处理PB级别的数据量。然而,仅仅完成数据处理还不够,还需要将这些数据转化为易于理解的信息,这就是数据可视化的重要性所在。本文将详细介绍如何使用Hadoop处理后的数据进行有效的可视化分析,并会涉及一些流行的可视化工具如Tableau、Qlik等。
NodeJS代理配置指南:详细步骤和代码示例
**Node.js 代理配置:解决HTTP请求转发与CORS挑战** 在现代开发环境中,Node.js以其高效和灵活性深受青睐,但正确配置代理以处理跨域请求和API调用仍是复杂任务。本文提供全面指南,从基础到高级设置,教授如何在Node.js中使用代理,覆盖httpOptions、npm代理及第三方库的运用,以增强API调用灵活性。
Fisher模型在统计学和机器学习领域通常指的是Fisher线性判别分析(Fisher's Linear Discriminant Analysis,简称LDA)
Fisher模型在统计学和机器学习领域通常指的是Fisher线性判别分析(Fisher's Linear Discriminant Analysis,简称LDA)
智能制造:AI驱动的生产革命——探索生产线优化、质量控制与供应链管理的新纪元
【7月更文第19天】随着第四次工业革命的浪潮席卷全球,人工智能(AI)正逐步成为推动制造业转型升级的核心力量。从生产线的智能化改造到质量控制的精密化管理,再到供应链的全局优化,AI技术以其强大的数据处理能力和深度学习算法,为企业开启了全新的生产效率和质量标准。本文将深入探讨AI在智能制造中的三大关键领域——生产线优化、质量控制、供应链管理中的应用与影响,并通过具体案例和代码示例加以阐述。
AI直播手机APP震撼发布!3大场景直播,60秒一键开播!
🎉 青否数字人AI直播APP发布!🚀 在抖音等平台60秒一键开播,简化直播流程。💡 3种AI直播模式,融合6大AIGC技术,助力新手轻松直播带货且避免违规。💪 AI主播、声音克隆,实时话术改写,智能互动与讲品同步,提升转化。📊 实景与视频直播结合,适应多种场景。🌐 独立部署,自定义版权,1年免费升级,专业售后支持。🚀 (直播: zhibo175) #青否数字人 #AI直播
阿里云百炼模型训练实战流程:从入门到实战应用
【7月更文第2天】阿里云百炼是AI大模型开发平台,提供一站式服务,涵盖模型训练到部署。用户从注册登录、创建应用开始,选择模型框架,配置资源。接着,进行数据准备、预处理,上传至阿里云OSS。模型训练涉及设置参数、启动训练及调优。训练后,模型导出并部署为API,集成到应用中。平台提供监控工具确保服务性能。通过百炼,开发者能高效地进行大模型实战,开启AI创新。
一步步教你用Python Selenium抓取动态网页任意行数据
使用Python Selenium爬取动态网页,结合代理IP提升抓取效率。安装Selenium,配置代理(如亿牛云),设置User-Agent和Cookies以模拟用户行为。示例代码展示如何使用XPath提取表格数据,处理异常,并通过隐式等待确保页面加载完成。代理、模拟浏览器行为和正确配置增强爬虫性能和成功率。
实时计算 Flink版操作报错合集之写入 Kafka 报错 "Failed to send data to Kafka: Failed to allocate memory within the configured max blocking time 60000 ms",该怎么解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
实时计算 Flink版操作报错合集之执行Flink job,报错“Could not execute SQL statement. Reason:org.apache.flink.table.api.ValidationException: One or more required options are missing”,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
Flink报错问题之Flink报错java.io.EOFException: SSL peer shut down incorrectly如何解决
Flink报错通常是指在使用Apache Flink进行实时数据处理时遇到的错误和异常情况;本合集致力于收集Flink运行中的报错信息和解决策略,以便开发者及时排查和修复问题,优化Flink作业的稳定性。
BERT的继任者ModernBERT:融合长序列处理、代码理解与高效计算的新一代双向编码器
ModernBERT 是一个全新的模型系列,在**速度**和**准确性**两个维度上全面超越了 BERT 及其后继模型。
数据仓库建模规范思考
本文介绍了数据仓库建模规范,包括模型分层、设计、数据类型、命名及接口开发等方面的详细规定。通过规范化分层逻辑、高内聚松耦合的设计、明确的命名规范和数据类型转换规则,提高数据仓库的可维护性、可扩展性和数据质量,为企业决策提供支持。
从零开始构建nlp情感分析模型!
本教程介绍了如何使用PyTorch和Hugging Face的Transformers库构建一个情感分析模型。主要内容包括导入所需库、读取训练数据集、加载预训练的BERT模型和分词器、定义情感数据集类、划分训练集和验证集、创建数据加载器、设置训练参数、训练模型、评估模型性能以及定义和测试预测函数。通过这些步骤,可以实现一个简单而有效的情感分析模型。
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
Python助您洞察先机:2024年A股市场数据抓取与分析实战
【10月更文挑战第1天】随着2024年中国股市的强劲表现,投资者们对于如何高效获取并分析相关金融数据的需求日益增长。本文旨在介绍如何利用Python这一强大的编程语言来抓取最新的A股交易数据,并通过数据分析技术为个人投资决策提供支持。
概率分布深度解析:PMF、PDF和CDF的技术指南
本文将深入探讨概率分布,详细阐述概率质量函数(PMF)、概率密度函数(PDF)和累积分布函数(CDF)这些核心概念,并通过实际示例进行说明。
PyTorch与CUDA:加速深度学习模型训练的最佳实践
【8月更文第27天】随着深度学习应用的广泛普及,高效利用GPU硬件成为提升模型训练速度的关键。PyTorch 是一个强大的深度学习框架,它支持动态计算图,易于使用且高度灵活。CUDA (Compute Unified Device Architecture) 则是 NVIDIA 开发的一种并行计算平台和编程模型,允许开发者直接访问 GPU 的并行计算能力。本文将详细介绍如何利用 PyTorch 与 CUDA 的集成来加速深度学习模型的训练过程,并提供具体的代码示例。
数据工作中的自动化与AI融合实践
【8月更文第13天】随着大数据和人工智能(AI)技术的发展,数据处理和分析变得越来越重要。本文将探讨如何通过自动化工具和AI技术来优化数据处理流程,包括数据清洗、特征工程、模型训练以及结果可视化等步骤。我们将使用Python编程语言及其相关库(如Pandas、Scikit-learn和TensorFlow)作为实现手段。
想要刻录蓝光光盘吗? 快来了解最好的蓝光刻录软件!
在数字娱乐蓬勃发展的今天,追求高清震撼的视听体验已成为趋势。面对众多高清视频制作工具的选择难题,DVDFab Blu-ray Creator脱颖而出,被誉为最佳蓝光刻录软件。它不仅支持多种视频格式输入(如MP4, MKV)及高清1080p输出,还能制作个性化菜单,兼容不同输出介质(BD-R, BD-RE等)。只需几步即可完成从视频导入到成品输出的全过程,无论是家庭回忆还是专业项目都能完美呈现。
新手向 Python:VsCode环境下Manim配置
该文介绍了如何准备和配置开发环境以使用Manim,主要包括两个步骤:一是准备工作,需要下载并安装VsCode和Anaconda,其中Anaconda需添加到系统PATH环境变量,并通过清华镜像源配置;二是配置环境,VsCode中安装中文插件和Python扩展,激活并配置虚拟环境。最后,安装ffmpeg和manim,通过VsCode运行测试代码验证配置成功。
实时计算 Flink版操作报错合集之报错io.debezium.DebeziumException: The db history topic or its content is fully or partially missing. Please check database history topic configuration and re-execute the snapshot. 是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
循环编码:时间序列中周期性特征的一种常用编码方式
循环编码是深度学习中处理周期性数据的一种技术,常用于时间序列预测。它将周期性特征(如小时、日、月)转换为网络可理解的形式,帮助模型识别周期性变化。传统的one-hot编码将时间特征转换为分类特征,而循环编码利用正弦和余弦转换,保持时间顺序信息。通过将时间戳转换为弧度并应用sin和cos,每个原始特征只映射到两个新特征,减少了特征数量。这种方法在神经网络中有效,但在树模型中可能需谨慎使用。
开源向量数据库比较:Chroma, Milvus, Faiss,Weaviate
该文探讨了向量数据库在语义搜索和RAG中的核心作用,并介绍了四个开源向量数据库:Chroma、Milvus、Faiss和Weaviate。这些数据库用于存储高维向量,支持基于相似性的快速搜索,改变了传统的精确匹配方法。文章详细比较了它们的特性,如Chroma的易用性,Milvus的存储效率,Faiss的GPU加速,和Weaviate的图数据模型。选择合适的数据库取决于具体需求,如数据类型、性能和使用场景。
文本向量化模型新突破——acge_text_embedding勇夺C-MTEB榜首
在人工智能的浪潮中,大型语言模型(LLM)无疑是最引人注目的潮头。在支撑这些大型语言模型应用落地方面,文本向量化模型(Embedding Model)的重要性也不言而喻。 近期,我在浏览huggingface发现,国产自研文本向量化模型acge_text_embedding(以下简称“acge模型”)已经在业界权威的中文语义向量评测基准C-MTEB(Chinese Massive Text Embedding Benchmark)中获得了第一名。
数据分布检验利器:通过Q-Q图进行可视化分布诊断、异常检测与预处理优化
Q-Q图(Quantile-Quantile Plot)是一种强大的可视化工具,用于验证数据是否符合特定分布(如正态分布)。通过比较数据和理论分布的分位数,Q-Q图能直观展示两者之间的差异,帮助选择合适的统计方法和机器学习模型。本文介绍了Q-Q图的工作原理、基础代码实现及其在数据预处理、模型验证和金融数据分析中的应用。
2024FFA-分论坛-流式湖仓1
FFA2024流式湖仓专场由Apache Flink核心贡献者与来自淘天集团、抖音集团、vivo、小米、中原银行、阿里云智能、蚂蚁集团、贝壳找房、货拉拉等公司的一线技术专家解析流批一体、存算分离、湖仓融合的实时湖仓架构,探讨以Apache Paimon为流批一体湖存储的湖仓架构建设实践,如何帮助业务获得更实时的数据来驱动业务决策,并实现数据管理的降本增效。
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
如果API调用失败,我应该如何排查问题?
当小红书API调用失败时,可按以下步骤排查:1. 检查请求参数;2. 确认身份验证凭据;3. 控制调用频率;4. 检查网络连接;5. 查看错误码和日志;6. 核实授权范围;7. 联系技术支持;8. 定期更新与测试。这些方法有助于系统地解决问题,确保API调用稳定。
python爬取m3u8实战!!
本文详细介绍了如何抓取和处理m3u8视频文件,包括从网页源代码中提取m3u8文件地址、下载m3u8文件及其对应的ts片段、处理加密的ts文件以及使用ffmpeg合并视频片段。通过多线程下载和文件路径处理,确保了高效和准确的视频抓取与合并。文中还提供了具体的Python代码示例,帮助读者理解和实现整个过程。
如何配置 Java 安全管理器来避免访问控制异常
配置Java安全管理器以防止访问控制异常,需在启动JVM时通过 `-Djava.security.manager` 参数启用,并设置安全策略文件,定义权限规则,限制代码执行操作,确保应用安全。
cdga|数据治理:应对核心业务数据质量参差不齐的挑战与策略
数据治理是指通过制定并实施一系列政策、流程和技术手段,确保数据的可用性、完整性、准确性和安全性,以支持企业的决策和业务运营。对于核心业务数据质量参差不齐的问题,数据治理的重要性不言而喻
CDGA|数据治理:确保数据质量与价值的综合性框架
数据治理是一个系统工程,涉及数据战略、数据架构、数据质量、数据安全、数据合规性、数据生命周期管理以及数据资产管理等多个方面。通过全面、系统地实施数据治理策略,可以确保数据资产的有效利用和价值的最大化。在数字化时代,数据治理已成为企业实现数字战略的基础和保障。
淘宝 API:关键词搜商品列表接口,助力商家按价格销量排序分析数据
此接口用于通过关键词搜索淘宝商品列表。首先需在淘宝开放平台注册并创建应用获取API权限,之后利用应用密钥和访问令牌调用接口。请求参数包括关键词、页码、每页数量、排序方式及价格区间等。返回结果含总商品数量及具体商品详情。使用时需注意签名验证及官方文档更新。
云栖实录 | MaxCompute 迈向下一代的智能云数仓
2024年云栖大会上,阿里云核心自研云原生智能数据仓库产品MaxCompute,在经过一年的深度打磨后,推出了其迈向下一代智能云数据仓的系列主题分享。此次产品发布,充分展示MaxCompute产品领先行业的云数据产品发展理念与核心优势。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。