阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
革新智能驾驶数据挖掘检索效率!某国内新能源汽车未来出行领导者选择阿里云Milvus构建多模态检索引擎
在智能驾驶技术快速发展中,数据成为驱动算法进步的核心。某新能源汽车领军企业基于阿里云Milvus向量数据库构建智能驾驶数据挖掘平台,利用其高性能、可扩展的相似性检索服务,解决了大规模向量数据检索瓶颈问题,显著降低20%以上成本,缩短模型迭代周期,实现从数据采集到场景挖掘的智能化闭环,加速智能驾驶落地应用。
Qwen3 X DataWorks :为数据开发与分析加满Buff !
阿里云DataWorks平台正式接入Qwen3模型,支持最大235B参数量。用户可通过DataWorks Copilot智能助手调用该模型,以自然语言交互实现代码生成、优化、解释及纠错等功能,大幅提升数据开发与分析效率。Qwen3作为最新一代大语言模型,具备混合专家(MoE)和稠密(Dense)架构,适应多种应用场景,并支持MCP协议优化复杂任务处理。目前,用户可通过DataWorks Data Studio新版本体验此功能。
文档切分实战:5种方法详解,打造高效RAG系统的第一步
本文深入解析RAG中至关重要的文档切分技术,系统介绍5种主流策略(句子、定长、重叠、递归、语义切分),结合代码示例与实战调优技巧,涵盖PDF/Markdown/代码等多格式处理,并提供质量评估与避坑指南,助你打造高精度、高效率的私有知识库。
大模型“驯化”指南:从人类偏好到专属AI,PPO与DPO谁是你的菜?
本文深入解析让AI“懂你”的关键技术——偏好对齐,对比PPO与DPO两种核心方法。PPO通过奖励模型间接优化,适合复杂场景;DPO则以对比学习直接训练,高效稳定,更适合大多数NLP任务。文章涵盖原理、实战步骤、评估方法及选型建议,并推荐从DPO入手、结合低代码平台快速验证。强调数据质量与迭代实践,助力开发者高效驯化大模型,实现个性化输出。
【AI大模型面试宝典七】- 训练优化篇
【AI大模型面试宝典】聚焦强化学习核心考点:从SARSA轨迹、在线/离线数据来源,到同策略与异策略差异,深入解析PPO、DPO、GRPO等主流算法原理与优化技巧,助你系统掌握RLHF、奖励模型设计及训练稳定性方案,轻松应对大模型面试高频难题,快速提升实战能力,offer拿到手软!
美股(纳斯达克/纽交所)数据 API 对接实战(含实时行情与 IPO 功能)
本文介绍如何通过StockTV API快速对接美股数据,支持纳斯达克、纽交所实时行情、IPO日历、K线图及公司基本面信息。仅需配置`countryId=5`,即可高效集成专业级金融数据,适用于量化交易与行情应用开发。
3 个真实 GEO 成功案例 + 3 步关键词排名秘籍!开发者 / 企业快速落地 GEO,流量 & 转化双提升
本文聚焦 GEO 真实获客案例与实操技巧,通过教培机构、工业设备商、小众茶叶品牌三个实测案例,展现 GEO 落地成效:教培机构靠升学数据咨询量暴增 210%,工业设备商盯准技术痛点让单笔订单翻 5 倍,茶叶品牌借产地溯源实现客单价从 200 元飙至 500 元。核心分享三步零门槛关键词法:列客户痛点、加场景限定、数据筛词,还拆解了不同平台关键词偏好。提醒效果需 1-3 个月积累,内容需真实且持续优化。新手可直接对照案例思路,结合自身行业调整,快速抢占搜索流量,精准获客。
Java 实现 SMTP 协议调用的详细示例及实战指南 SMTP Java 调用示例
本文介绍了如何使用Java调用SMTP协议发送邮件,涵盖SMTP基本概念、JavaMail API配置、代码实现及注意事项,适合Java开发者快速掌握邮件发送功能集成。
淘宝API系列:淘宝店铺所有商品API接口详解
本攻略详解淘宝店铺商品API接口,涵盖接口概述、核心分类与功能、调用准备、请求示例及应用场景,助开发者高效获取商品信息,适用于电商开发与数据管理。
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
近年来,多模态表示学习在人工智能领域取得显著进展,CLIP和SigLIP成为里程碑式模型。CLIP由OpenAI提出,通过对比学习对齐图像与文本嵌入空间,具备强大零样本学习能力;SigLIP由Google开发,采用sigmoid损失函数优化训练效率与可扩展性。两者推动了多模态大型语言模型(MLLMs)的发展,如LLaVA、BLIP-2和Flamingo等,实现了视觉问答、图像描述生成等复杂任务。这些模型不仅拓展了理论边界,还为医疗、教育等领域释放技术潜力,标志着多模态智能系统的重要进步。
StarRocks + Paimon: 构建 Lakehouse Native 数据引擎
12月10日,Streaming Lakehouse Meetup Online EP.2重磅回归,聚焦StarRocks与Apache Paimon深度集成,探讨Lakehouse Native数据引擎的构建。活动涵盖架构统一、多源联邦分析、性能优化及可观测性提升,助力企业打造高效实时湖仓一体平台。
企业如何建立自己的「信任资产负债表」?
企业常忽视“信任资产负债表”——系统长期记录其言行一致性的隐性账本。它影响获客、转化与推荐权重,由行为一致性、可验证承诺、修复能力与稳定输出构成资产端,而承诺透支、反复变动、风险逃逸等则积累负债。信任失衡导致增长乏力,修复需从克制口径、建立修复机制、保持可预测行为起步。信任是未来竞争的核心资产。
二、Hive安装部署详细过程
手把手教你完成 Hive 的安装、配置和可视化连接,适合初学者快速搭建自己的大数据分析平台。内容涵盖从环境准备、Metastore配置,到 DataGrip 连接的全流程,并附带实用的排错指南,助你轻松迈出 Hive 入门第一步。
小红书API接口文档:笔记详情数据开发手册
小红书笔记详情API可获取指定笔记的标题、正文、互动数据及多媒体资源,支持字段筛选与评论加载。通过note_id和access_token发起GET/POST请求,配合签名验证,广泛用于内容分析与营销优化。
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
从零开始:如何训练自己的AI模型
### 从零开始:如何训练自己的AI模型 训练AI模型如同培养新生儿,需耐心与技巧。首先明确目标(如图像识别、自然语言处理),选择框架(TensorFlow、PyTorch)。接着收集并预处理数据,确保多样性和准确性。然后设计模型结构,如卷积神经网络(CNN),并通过代码实现训练。训练后评估模型性能,调优以避免过拟合。最后部署模型至实际应用。通过猫狗分类器案例,掌握关键步骤和常见问题。训练AI模型是不断迭代优化的过程,实践才能真正掌握精髓。
朝阳永续基于阿里云 Milvus 构建金融智能投研产品“AI 小二”
朝阳永续通过采用阿里云向量检索服务 Milvus 版,构建了金融级智能投研引擎“AI 小二”,实现了对海量公告、研报和财报数据的高效语义检索。在智能问答、管理层表述分析等场景中,查询响应速度提升超 10 倍,系统稳定性显著增强,运维成本降低 80%,全面提升了投研效率与用户体验。
秒级行情推送系统实战:从触发、采集到入库的端到端架构
本文设计了一套秒级实时行情推送系统,涵盖触发、采集、缓冲、入库与推送五层架构,结合动态代理IP、Kafka/Redis缓冲及WebSocket推送,实现金融数据低延迟、高并发处理,适用于股票、数字货币等实时行情场景。
Java 大视界 -- Java 大数据在智能家居能源消耗模式分析与节能策略制定中的应用(198)
简介:本文探讨Java大数据技术在智能家居能源消耗分析与节能策略中的应用。通过数据采集、存储与智能分析,构建能耗模型,挖掘用电模式,制定设备调度策略,实现节能目标。结合实际案例,展示Java大数据在智能家居节能中的关键作用。
开发者必看:HTTP 2xx 响应码的正确理解与运用
HTTP 2xx状态码表示请求成功,涵盖200(成功)、201(已创建)、202(已接受)、204(无内容)和206(部分内容)五类。开发者需准确识别以优化调试与用户体验。
告别关键词搜索:手把手教你用向量数据库,解锁大模型的“最新”知识
本文用通俗语言详解向量数据库原理与实践:它通过“语义向量化”实现按意思而非关键词检索,是RAG系统中连接大模型与私有数据的核心“外挂大脑”。附Faiss+Sentence-Transformers实战Demo,10分钟搭建可运行的语义检索系统。(239字)
大模型微调新篇章:从“学会知识”到“理解偏好”,PPO算法全解析与实践指南
本文深入解析大模型对齐人类偏好的核心技术——近端策略优化(PPO)。从原理到实践,详解PPO如何通过Actor、Reference、Reward与Critic四模型协作,结合强化学习实现更自然、安全、有用的对话。涵盖训练流程、常见问题、评估方法及进阶技巧,并以LLaMA-Factory为例演示操作,助力开发者快速上手,打造更“懂你”的AI助手。
阿里云服务器多少钱一年?整理2026年云服务器新购、续费和升级配置费用清单
阿里云2026年服务器价格出炉!轻量服务器低至38元/年,ECS新购续费同价,2核2G仅99元/年起。本文详解轻量服务器与ECS区别、配置费用、升级规则及省钱技巧,助你选对方案,轻松上云,一年省下上千元。
一行代码,让 Elasticsearch 集群瞬间雪崩——5000W 数据压测下的性能避坑全攻略
本文深入剖析 Elasticsearch 中模糊查询的三大陷阱及性能优化方案。通过5000 万级数据量下做了高压测试,用真实数据复刻事故现场,助力开发者规避“查询雪崩”,为您的业务保驾护航。
小红书笔记评论API:一键获取分层评论与用户互动数据
小红书笔记评论API可获取指定笔记的评论详情,包括内容、点赞数、评论者信息等,支持分页与身份认证,返回JSON格式数据,适用于舆情监控、用户行为分析等场景。
大数据时代的智能研发平台需求与阿里云DIDE的定位
阿里云DIDE是一站式智能大数据开发与治理平台,致力于解决传统大数据开发中的效率低、协同难等问题。通过全面整合资源、高度抽象化设计及流程自动化,DIDE显著提升数据处理效率,降低使用门槛,适用于多行业、多场景的数据开发需求,助力企业实现数字化转型与智能化升级。
给大模型“开小灶”:一文读懂微调原理与实战,让你的AI更懂你
本文深入浅出讲解大模型微调:为何需“开小灶”?详解全量微调、LoRA(装插件)、Prompt Tuning(学咒语)及RLHF等主流方法;手把手演示LoRA三步实践——数据准备、配置训练、测试部署;并提供效果评估与低门槛工具推荐。助力开发者快速打造领域专属AI。(239字)
金融行情系统中,API 接入常见的 5 个工程问题
本文以黄金、白银等高波动贵金属行情为例,剖析金融系统在API接入层面的五大典型工程问题:数据延迟放大、单点依赖风险、多源维护成本高、异常处理分散、缺乏统一接入层。强调统一、可控、可演进的API设计对系统稳定性与长期演进的关键价值。
开源大模型微调对比:选对模型,让定制化更高效
本文对比Llama 3、Qwen2.5、Mistral三款开源大模型在中文场景下的微调表现,从算力门槛、数据效率、任务适配性等维度分析,结合实战案例与主观评估,为开发者提供选型建议,助力高效构建定制化AI模型。
Vue微服务架构实践:从单应用到微前端的落地方案
本文详解Vue微前端架构,针对大型项目面临的代码冗余、协作困难等问题,拆解从子应用改造、主应用搭建到部署优化的全流程。基于qiankun框架,实现团队独立开发、技术栈灵活、增量升级与独立部署,提升系统可维护性与扩展性,为中大型前端项目提供落地实践方案。
超详细!JetBrains Rider 2025.1 安装到能用,激活 + 安装步骤—附安装包
JetBrains Rider 2025.1 是全能型跨平台全栈 IDE,深度集成 AI 编码助手,支持 .NET 9、Unity 2025、Blazor 等最新技术,覆盖 C#、Python、Go 等 20+ 语言,赋能游戏、云原生与微服务开发,实现 AI 辅助生成、调试、测试与文档一体化。
京东商品详情API接口(标题|主图|SKU|价格)
京东商品详情API提供标准化接口,支持通过HTTPS获取商品标题、价格、库存、销量等120+字段,数据实时更新至分钟级。包含jd.item.get和jd.union.open.goods.detail.query等接口,支持批量查询200个SKU,适用于价格监控、竞品分析等电商场景。
在 OpenAI 打造流处理平台:超大规模实时计算的实践与思考
本文介绍OpenAI构建流处理平台的实践与挑战。面对Kafka高可用、Python生态兼容、云环境限制等问题,团队基于PyFlink打造跨区域流处理架构,集成Kafka HA组、自研代理与控制平面,支撑实时Embedding生成、特征计算等场景,并推动开源协作与平台自动化演进。
vLLM推理加速指南:7个技巧让QPS提升30-60%
GPU资源有限,提升推理效率需多管齐下。本文分享vLLM实战调优七招:请求塑形、KV缓存复用、推测解码、量化、并行策略、准入控制与预热监控。结合代码与数据,助你最大化吞吐、降低延迟,实现高QPS稳定服务。
NVFP4量化技术深度解析:4位精度下实现2.3倍推理加速
本文深入解析NVIDIA推出的NVFP4量化技术,探讨其在Blackwell GPU架构下的性能优势。通过对比主流4位量化方法,分析NVFP4在精度、内存和推理吞吐量方面的表现,结合LLM-Compressor与vLLM框架展示量化与部署实践,验证其在消费级与企业级应用中的高效性与实用性。
大模型太“通用”?一文搞懂模型微调:从原理到实战,让AI听懂你的行话
本文深入浅出地讲解大模型微调的必要性、原理与实践:针对通用LLM在专业性、时效性、幻觉及业务适配上的不足,详解LoRA等参数高效微调技术,并以IT知识助手为例,手把手演示数据准备、模型选择、训练评估到部署的全流程,助力开发者低成本打造专属领域专家模型。(239字)
Opus 4.5、GPT-5.2 与 Gemini 3 Pro:企业级场景下的大模型工程表现对比
本文从工程与生产视角,对比Opus 4.5、GPT-5.2、Gemini 3 Pro三款大模型在输出一致性、可控性、长上下文、接口确定性等维度的表现,强调企业级AI选型应重稳定性与系统友好度,而非单纯比拼能力。
深度 AI 学术是怎样学习百度学术、谷歌学术的先进经验的?
深度AI学术融合百度学术与Google Scholar优势,聚合2.8亿文献,支持中英文语义检索、AI自动摘要、引用追踪及趋势分析;创新提供批量翻译、自定义维度解析与学术报告生成,打造智能科研助手。(239字)
Hologres Dynamic Table在淘天价格力的业务实践
淘天价格力团队依托Hologres Dynamic Table,实现亿级商品数据的高效治理。通过增量刷新与全量刷新机制,支持秒级圈选、分钟级报表更新,满足大促场景下高时效、多维度分析需求,显著提升数据灵活性与决策效率。
大模型微调显存计算:从原理到实践的精准把控
本文深入解析大模型微调中的显存占用问题,揭示8GB显存为何能跑7B模型的真相。从显存四大组成部分入手,结合量化、LoRA、AdamW8bit等优化策略,手把手教你精准计算与压缩显存,让低配显卡也能高效微调大模型,助力AI实践入门。
阿里云 AI 搜索 DeepSearch 技术实践
阿里云OpenSearch LLM版推出DeepSearch技术,实现从RAG 1.0到RAG 2.0的升级。基于多智能体协同架构,支持复杂推理、多源检索与深度搜索,显著提升问答准确率,助力企业智能化升级。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。