|
3月前
|
存储 数据采集 安全
|

CDAM数据资产管理的策略制定与落地

在数字化时代,数据成为企业的核心资产,直接影响决策效率与市场竞争力。本文探讨数据资产管理策略的制定与实施,涵盖目标设定、组织架构搭建、政策流程制定、工具技术应用、数据战略规划、人才培养、风险管理及持续优化等方面,旨在为企业提供全方位的实践指导。

425 0
|
3月前
|
存储 移动开发 大数据
|

HTML5 Web IndexedDB 数据库详解

IndexedDB 是一种高效的浏览器存储方案,允许在本地存储大量结构化数据,支持索引和事务,适用于需要离线和大数据处理的应用。它由数据库、对象仓库等组成,通过键值对存储数据,确保数据一致性和完整性。本介绍展示了如何创建、读取、更新和删除数据,以及事务和错误处理的最佳实践。

409 10
|
4月前
|
机器学习/深度学习 数据采集 算法
|

时间序列结构变化分析:Python实现时间序列变化点检测

在时间序列分析和预测中,准确检测结构变化至关重要。新出现的分布模式往往会导致历史数据失去代表性,进而影响基于这些数据训练的模型的有效性。

333 1
|
5月前
|
机器学习/深度学习 PyTorch 数据处理
|

数据增强与 DataLoader:提升模型泛化能力的策略

【8月更文第29天】在深度学习中,数据的质量和数量对于模型的性能至关重要。数据增强是一种常用的技术,它通过对原始数据进行变换(如旋转、缩放、裁剪等)来生成额外的训练样本,从而增加训练集的多样性和规模。这有助于提高模型的泛化能力,减少过拟合的风险。同时,`DataLoader` 是 PyTorch 中一个强大的工具,可以有效地加载和预处理数据,并支持并行读取数据,这对于加速训练过程非常有帮助。

490 1
|
5月前
|
机器学习/深度学习 并行计算 PyTorch
|

PyTorch与CUDA:加速深度学习模型训练的最佳实践

【8月更文第27天】随着深度学习应用的广泛普及,高效利用GPU硬件成为提升模型训练速度的关键。PyTorch 是一个强大的深度学习框架,它支持动态计算图,易于使用且高度灵活。CUDA (Compute Unified Device Architecture) 则是 NVIDIA 开发的一种并行计算平台和编程模型,允许开发者直接访问 GPU 的并行计算能力。本文将详细介绍如何利用 PyTorch 与 CUDA 的集成来加速深度学习模型的训练过程,并提供具体的代码示例。

972 3
|
5月前
|
监控 安全 数据安全/隐私保护
|

确保数据安全与隐私保护的数据治理最佳实践

【8月更文第13天】随着数据成为企业最重要的资产之一,数据安全和隐私保护变得至关重要。本文将探讨数据治理中的一些最佳实践,并提供具体的代码示例来说明如何实施这些策略。

1080 4
|
6月前
|
供应链 Python
|

供需匹配(Demand-Supply Matching)的详细解释与Python代码示例

供需匹配(Demand-Supply Matching)的详细解释与Python代码示例

742 2
|
7月前
|
机器学习/深度学习 自然语言处理 TensorFlow
|

使用Python实现深度学习模型:BERT模型教程

使用Python实现深度学习模型:BERT模型教程

443 0
|
14天前
|
机器学习/深度学习 数据采集 DataWorks
|

数据分析经典案例重现:使用DataWorks Notebook 实现Kaggle竞赛之房价预测,成为数据分析大神!

Python是目前当之无愧的数据分析第一语言,大量的数据科学家使用Python来完成各种各样的数据科学任务。本文以Kaggle竞赛中的房价预测为例,结合DataWorks Notebook,完成数据加载、数据探索、数据可视化、数据清洗、特征分析、特征处理、机器学习、回归预测等步骤,主要Python工具是Pandas和SKLearn。本文中仅仅使用了线性回归这一最基本的机器学习模型,读者可以自行尝试其他更加复杂模型,比如随机森林、支持向量机、XGBoost等。

154 7
|
30天前
|
机器学习/深度学习 人工智能 算法
|

深入解析图神经网络:Graph Transformer的算法基础与工程实践

Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。

163 30
|
2月前
|
数据挖掘
|

置信区间与预测区间:数据科学中的不确定性量化技术深度解读

本文深入探讨了统计学中两个常见但容易混淆的不确定性量化工具:置信区间和预测区间。

224 1
|
2月前
|
数据采集 存储 监控
|

Java爬虫:数据采集的强大工具

在数据驱动的时代,Java爬虫技术凭借其强大的功能和灵活性,成为企业获取市场信息、用户行为及竞争情报的关键工具。本文详细介绍了Java爬虫的工作原理、应用场景、构建方法及其重要性,强调了在合法合规的前提下,如何有效利用Java爬虫技术为企业决策提供支持。

206 2
|
2月前
|
JSON API 数据格式
|

淘宝 / 天猫官方商品 / 订单订单 API 接口丨商品上传接口对接步骤

要对接淘宝/天猫官方商品或订单API,需先注册淘宝开放平台账号,创建应用获取App Key和App Secret。之后,详细阅读API文档,了解接口功能及权限要求,编写认证、构建请求、发送请求和处理响应的代码。最后,在沙箱环境中测试与调试,确保API调用的正确性和稳定性。

200 1
|
2月前
|
Linux 文件存储 Windows
|

linux软连接详解!!!

本文介绍了Linux文件类型、文件属性、文件存储机制以及软链接和硬链接的概念。主要内容包括:Linux文件类型及其识别方法、文件属性的组成及查看方式、inode和block的作用、软链接和硬链接的区别及应用场景。通过具体示例,帮助读者理解Linux文件系统的运作原理。

248 2
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
|

11种经典时间序列预测方法:理论、Python实现与应用

本文将总结11种经典的时间序列预测方法,并提供它们在Python中的实现示例。

186 2
|
3月前
|
数据采集 前端开发 开发者
|

Selenium中如何实现翻页功能

在使用Python的Selenium库进行网页爬虫开发时,翻页操作是常见需求。本文详细介绍如何通过Selenium实现翻页,包括定位翻页控件、执行翻页动作以及等待页面加载等关键步骤,并提供了基于“下一页”按钮和输入页码两种方式的具体示例代码。此外,还特别提醒开发者注意页面加载完全、动态内容加载及反爬机制等问题,确保爬虫稳定高效运行。

435 3
来自: 大数据运维SREWorks  版块
|
3月前
|
数据采集 存储 监控
|

CDGA|数据治理:让数据与业务伴生的实践路径

在数据驱动的时代,数据已成为企业宝贵资产,蕴含推动业务增长与创新的无限可能。数据治理通过科学策略挖掘、整合、保护数据,成为企业数字化转型的核心驱动力。本文阐述了数据治理的定义、重要性及其实践路径,强调跨部门协作与全员参与,确保数据质量、安全及合规性,支持企业战略目标实现。通过明确数据战略、建立管理体系、推动数据共享和持续优化,数据治理助力企业实现数据与业务的伴生共长。

420 0
|
5月前
|
数据采集 Web App开发 测试技术
|

使用Selenium调试Edge浏览器的常见问题与解决方案

在互联网数据采集领域,Selenium常用于自动化网页爬取。针对使用Edge浏览器时遇到的启动远程调试失败、访问受限及代理IP设置等问题,本文提供了解决方案。通过特定命令启动Edge的远程调试模式,并利用Python脚本配合Selenium库,可实现代理IP、User-Agent的设定及Cookie管理等高级功能,有效提升爬虫稳定性和隐蔽性。遵循步骤配置后,即可顺畅执行自动化测试任务。

1073 1
|
6月前
|
人工智能 数据挖掘 数据库
|

客户在哪儿AI——做真正管用的大客户获客方案

我们的目标是打造高效的ToB大客户获客方案。客户在哪儿AI生成企业全历史行为数据并提供数据分析服务,帮助企业从上帝视角洞察营销。通过真实案例展示,AI能显著提升活动营销效果,例如仅通过10场活动即可触及贡献44.9%营收的客户,30场则可达73.3%,极大提高效率。此外,在决策层和销售工作中,AI发现了某一关键客户与其69.3%营收来源有深层联系,证实了聚焦此客户的战略价值。我们虽不能公开全部细节,但愿与有兴趣者分享真实分析流程。由于服务刚启动,目前尚未有足够反馈,未来将及时分享成果。

607 0
|
8月前
|
Java 网络安全 API
|

Java一分钟之-JavaMail:发送电子邮件

本文介绍了使用JavaMail API发送电子邮件的步骤,包括环境准备、依赖引入、基本配置和代码示例。通过添加Maven或Gradle依赖,设置SMTP服务器信息并实现Authenticator,可以创建和发送邮件。同时,文章列举了SMTP认证失败、连接超时等常见问题及其解决方案,并提出了安全与最佳实践建议,如启用SSL/TLS、避免硬编码密码和妥善处理异常。

1344 0
|
8月前
|
存储 分布式计算 Apache
|

构建 Streaming Lakehouse:使用 Paimon 和 Hudi 的性能对比

Apache Paimon 和 Apache Hudi 作为数据湖存储格式,有着高吞吐的写入和低延迟的查询性能,是构建数据湖的常用组件。本文将在阿里云EMR 上,针对数据实时入湖场景,对 Paimon 和 Hudi 的性能进行比对,然后分别以 Paimon 和 Hudi 作为统一存储搭建准实时数仓。

59064 8
来自: 实时计算 Flink  版块
|
2月前
|
SQL 流计算 关系型数据库
|

基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析

阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。

468 5
|
2月前
|
Java Unix Linux
|

Java “SocketException” 错误怎么处理

Java 中的 "SocketException" 错误通常发生在网络通信过程中,如连接失败、断开连接或数据传输异常。处理方法包括检查网络配置、确保服务器正常运行、使用超时设置和重试机制,以及捕获并处理异常。

295 5
|
4月前
|
移动开发 JavaScript 前端开发
|

HTML5 Audio(音频)详解

HTML5 通过 `<audio>` 标签简化了网页音频嵌入。本文详细介绍其基本语法与常用属性(如 `controls`、`autoplay`),并通过示例代码展示如何使用 JavaScript 控制音频播放及处理音频事件。此外,还提供了关于浏览器兼容性、自适应设计及无障碍访问的注意事项,助您优化音频体验。

435 3
|
8月前
|
Python
|

新手向 Python:VsCode环境下Manim配置

该文介绍了如何准备和配置开发环境以使用Manim,主要包括两个步骤:一是准备工作,需要下载并安装VsCode和Anaconda,其中Anaconda需添加到系统PATH环境变量,并通过清华镜像源配置;二是配置环境,VsCode中安装中文插件和Python扩展,激活并配置虚拟环境。最后,安装ffmpeg和manim,通过VsCode运行测试代码验证配置成功。

515 1
|
8月前
|
分布式计算 安全 Hadoop
|

Hadoop 集群一直处于安全模式,强制退出后出现数据丢失警告。解决方法

本文介绍了Hadoop集群安全模式的相关命令和问题解决。当集群处于安全模式时,可使用`hdfs dfsadmin -safemode get`检查状态,`enter`进入,`leave`或`forceExit`离开。若因数据块不一致导致安全模式持续,可通过强制退出,然后删除丢失数据块的文件以恢复正常。如果遇到权限问题,可以使用`chmod`授权或关闭HDFS权限验证(不推荐),配置修改后需重启集群生效。

721 0
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
|

使用Python实现卷积神经网络(CNN)

使用Python实现卷积神经网络(CNN)的博客教程

595 1
|
8月前
|
消息中间件 安全 Java
|

如何为Kafka加上账号密码(一)

一直以来,我们公司内网的Kafka集群都是在裸奔,只要知道端口号,任何人都能连上集群操作一番。直到有个主题莫名消失,才引起我们的警觉,是时候该考虑为它添加一套认证策略了。

1620 2
|
2月前
|
前端开发 Java 数据库连接
|

你不可不知道的JAVA EE 框架有哪些?

本文介绍了框架的基本概念及其在编程领域的应用,强调了软件框架作为通用、可复用的软件环境的重要性。文章分析了早期Java EE开发中使用JSP+Servlet技术的弊端,包括可维护性差和代码重用性低等问题,并阐述了使用框架的优势,如提高开发效率、增强代码规范性和可维护性及提升软件性能。最后,文中详细描述了几种主流的Java EE框架,包括Spring、Spring MVC、MyBatis、Hibernate和Struts 2,这些框架通过提供强大的功能和支持,显著提升了Java EE应用的开发效率和稳定性。

130 1
|
3月前
|
机器学习/深度学习 存储 自然语言处理
|

从理论到实践:如何使用长短期记忆网络(LSTM)改善自然语言处理任务

【10月更文挑战第7天】随着深度学习技术的发展,循环神经网络(RNNs)及其变体,特别是长短期记忆网络(LSTMs),已经成为处理序列数据的强大工具。在自然语言处理(NLP)领域,LSTM因其能够捕捉文本中的长期依赖关系而变得尤为重要。本文将介绍LSTM的基本原理,并通过具体的代码示例来展示如何在实际的NLP任务中应用LSTM。

237 4
|
3月前
|
API 定位技术
|

api接口如何对接?(带你了解api接口的相关知识)

API接口是在产品和研发领域广泛应用的专业术语,主要用于公司内部系统衔接及公司间合作。本文将详细讲解API接口的概念、必要性及其核心要素。首先介绍API接口的基本原理与应用场景,随后阐述其重要性,最后解析API接口的核心组成部分,帮助读者深入理解API接口的工作机制。适合产品小白和求职者阅读,提升专业知识。

252 0
|
4月前
|
机器学习/深度学习 数据采集 自然语言处理
|

使用Python实现深度学习模型:智能社交媒体内容分析

使用Python实现深度学习模型:智能社交媒体内容分析

585 69
|
5月前
|
SQL 分布式计算 数据可视化
|

基于Hadoop的大数据可视化方法

【8月更文第28天】在大数据时代,有效地处理和分析海量数据对于企业来说至关重要。Hadoop作为一个强大的分布式数据处理框架,能够处理PB级别的数据量。然而,仅仅完成数据处理还不够,还需要将这些数据转化为易于理解的信息,这就是数据可视化的重要性所在。本文将详细介绍如何使用Hadoop处理后的数据进行有效的可视化分析,并会涉及一些流行的可视化工具如Tableau、Qlik等。

396 0
|
5月前
|
机器学习/深度学习 边缘计算 PyTorch
|

PyTorch 与 ONNX:模型的跨平台部署策略

【8月更文第27天】深度学习模型的训练通常是在具有强大计算能力的平台上完成的,比如配备有高性能 GPU 的服务器。然而,为了将这些模型应用到实际产品中,往往需要将其部署到各种不同的设备上,包括移动设备、边缘计算设备甚至是嵌入式系统。这就需要一种能够在多种平台上运行的模型格式。ONNX(Open Neural Network Exchange)作为一种开放的标准,旨在解决模型的可移植性问题,使得开发者可以在不同的框架之间无缝迁移模型。本文将介绍如何使用 PyTorch 将训练好的模型导出为 ONNX 格式,并进一步探讨如何在不同平台上部署这些模型。

400 2
|
5月前
|
机器学习/深度学习 数据采集 PyTorch
|

构建高效 PyTorch 模型:内存管理和优化技巧

【8月更文第27天】PyTorch 是一个强大的深度学习框架,被广泛用于构建复杂的神经网络模型。然而,在处理大规模数据集或使用高性能 GPU 进行训练时,有效的内存管理对于提升模型训练效率至关重要。本文将探讨如何在 PyTorch 中有效地管理内存,并提供一些优化技巧及代码示例。

343 1
|
5月前
|
敏捷开发 数据可视化 持续交付
|

敏捷开发方法:理论与实践

【8月更文第22天】随着信息技术的发展,软件项目的复杂度不断提高,传统的瀑布式开发模式越来越难以适应快速变化的市场需求。为了解决这些问题,敏捷开发方法应运而生。本文将探讨敏捷开发的核心理念、敏捷宣言与原则、Scrum框架、Kanban方法以及相关的敏捷实践与工具。

524 2
|
5月前
|
人工智能 安全 区块链
|

区块链与人工智能的融合道路:揭秘未来科技新风口

在科技创新的浪潮中,区块链与人工智能正交汇融合,如双星辉映,激发无限潜能。区块链以去中心化、不可篡改的特性革新数据安全与信任;AI则以强大算法引领工业革命。两者融合,为AI提供安全数据基础,使数据可追溯、不可篡改,同时利用AI提升区块链效率与自动化水平,加速交易验证,最终在金融、医疗等领域催生创新应用,深刻影响社会进步与民众生活,成为未来技术发展的核心动力。

468 1
|
5月前
|
机器学习/深度学习 人工智能 算法
|

AI Native应用中基于用户反馈的动态模型微调机制

【8月更文第1天】在AI Native应用程序中,用户体验和满意度是衡量产品成功的关键指标之一。为了提高这些指标,本文介绍了一种基于用户反馈的动态模型微调机制。这种方法允许模型在运行时根据用户的实际行为和偏好进行自我调整,从而不断优化其性能。

737 5
|
6月前
|
Python
|

Fama-French模型,特别是三因子模型(Fama-French Three-Factor Model)

Fama-French模型,特别是三因子模型(Fama-French Three-Factor Model)

424 1
|
6月前
|
机器学习/深度学习 人工智能 视频直播
|

AI直播手机APP震撼发布!3大场景直播,60秒一键开播!

🎉 青否数字人AI直播APP发布!🚀 在抖音等平台60秒一键开播,简化直播流程。💡 3种AI直播模式,融合6大AIGC技术,助力新手轻松直播带货且避免违规。💪 AI主播、声音克隆,实时话术改写,智能互动与讲品同步,提升转化。📊 实景与视频直播结合,适应多种场景。🌐 独立部署,自定义版权,1年免费升级,专业售后支持。🚀 (直播: zhibo175) #青否数字人 #AI直播

600 0
|
7月前
|
数据采集 Web App开发 数据处理
|

一步步教你用Python Selenium抓取动态网页任意行数据

使用Python Selenium爬取动态网页,结合代理IP提升抓取效率。安装Selenium,配置代理(如亿牛云),设置User-Agent和Cookies以模拟用户行为。示例代码展示如何使用XPath提取表格数据,处理异常,并通过隐式等待确保页面加载完成。代理、模拟浏览器行为和正确配置增强爬虫性能和成功率。

826 3
|
7月前
|
搜索推荐 算法 UED
|

基于Python的推荐系统算法实现与评估

本文介绍了推荐系统的基本概念和主流算法,包括基于内容的推荐、协同过滤以及混合推荐。通过Python代码示例展示了如何实现基于内容的推荐和简化版用户-用户协同过滤,并讨论了推荐系统性能评估指标,如预测精度和覆盖率。文章强调推荐系统设计的迭代优化过程,指出实际应用中需考虑数据稀疏性、冷启动等问题。【6月更文挑战第11天】

1152 3
|
7月前
|
数据采集 存储 数据可视化
|

Pandas高级教程:数据清洗、转换与分析

Pandas是Python的数据分析库,提供Series和DataFrame数据结构及数据分析工具,便于数据清洗、转换和分析。本教程涵盖Pandas在数据清洗(如缺失值、重复值和异常值处理)、转换(数据类型转换和重塑)和分析(如描述性统计、分组聚合和可视化)的应用。通过学习Pandas,用户能更高效地处理和理解数据,为数据分析任务打下基础。

856 3
|
8月前
|
SQL 存储 Java
|

Hive 特殊的数据类型 Array、Map、Struct

在Hive中,`Array`、`Map`和`Struct`是三种特殊的数据类型。`Array`用于存储相同类型的列表,如`select array(1, "1", 2, 3, 4, 5)`会产生一个整数数组。`Map`是键值对集合,键值类型需一致,如`select map(1, 2, 3, "4")`会产生一个整数到整数的映射。`Struct`表示结构体,有固定数量和类型的字段,如`select struct(1, 2, 3, 4)`创建一个无名结构体。这些类型支持嵌套使用,允许更复杂的结构数据存储。例如,可以创建一个包含用户结构体的数组来存储多用户信息

723 0
|
8月前
|
机器学习/深度学习 算法 PyTorch
|

计算机视觉快速入门:探索图像处理

本文介绍了计算机视觉的基本概念和学习路径,包括图像处理、特征提取、目标检测、图像分类与分割以及深度学习在该领域的应用。初学者应从图像处理基础开始,学习数字图像概念、处理技术及开源库如OpenCV。接着,探索特征提取与描述方法,如SIFT和HOG,以及目标检测的算法,如Haar级联和YOLO。进一步,掌握图像分类和分割技术,涉及深度学习模型如CNN。通过实践项目深化理解,并关注最新研究,持续学习和探索,以在计算机视觉领域不断进步。

609 0
|
8月前
|
SQL 分布式计算 Hadoop
|

利用Hive与Hadoop构建大数据仓库:从零到一

【4月更文挑战第7天】本文介绍了如何使用Apache Hive与Hadoop构建大数据仓库。Hadoop的HDFS和YARN提供分布式存储和资源管理,而Hive作为基于Hadoop的数据仓库系统,通过HiveQL简化大数据查询。构建过程包括设置Hadoop集群、安装配置Hive、数据导入与管理、查询分析以及ETL与调度。大数据仓库的应用场景包括海量数据存储、离线分析、数据服务化和数据湖构建,为企业决策和创新提供支持。

984 1
|
8月前
|
机器学习/深度学习 弹性计算 TensorFlow
|

阿里云GPU加速:大模型训练与推理的全流程指南

随着深度学习和大规模模型的普及,GPU成为训练和推理的关键加速器。本文将详细介绍如何利用阿里云GPU产品完成大模型的训练与推理。我们将使用Elastic GPU、阿里云深度学习镜像、ECS(云服务器)等阿里云产品,通过代码示例和详细说明,带你一步步完成整个流程。

2420 0
|
2月前
|
机器学习/深度学习 自然语言处理 PyTorch
|

从零开始构建nlp情感分析模型!

本教程介绍了如何使用PyTorch和Hugging Face的Transformers库构建一个情感分析模型。主要内容包括导入所需库、读取训练数据集、加载预训练的BERT模型和分词器、定义情感数据集类、划分训练集和验证集、创建数据加载器、设置训练参数、训练模型、评估模型性能以及定义和测试预测函数。通过这些步骤,可以实现一个简单而有效的情感分析模型。

235 2